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We study the zeros of the partition function of a classical spin system and compute a
region of the complex fugacity plane where they necessarily lie. We recover the Lee-
Yang circle theorem as a special example; we also find that a spin system with finite-
range interaction has no phase transition at high temperature.

Asano's recent results' have revived interest
in the celebrated Lee-Yang circle theorem, ~ by
giving it a more conceptual proof. Here an ex-
tension of the circle theorem to noncircular re-
gions is proved and applied to problems in statis-
tical mechanics.

(1) Statement of results. —Let P be a complex
polynomial in several variables, which is of de-
gree 1 with respect to each, i.e. , A is a finite
set and

P(z~) = Q c»z,
xCA

where z~ = (z„)„,~, and z =ll„,» z„.
Theorem: Let (A ) be a finite covering of A,

and for every xGA let A „be a closed subset
of the complex plane C such that OEPIVi „. For
each o. we assume that the polynomial

P (zA )= Q c„xzx
XC~o

does not vanish when z„(E—ll (-M „), all xgA.
Then the polynomial

P(z~) = Q z pc~(A„nx)
xCA

does not vanish when' z„Q -g„(-M „), all x&A.
The proof is given in Section 2. This result ex-

tends a theorem by Lee and Yang, ' and can be
used in the same way to obtain regions free of
zeros for polynomials in one variable. More
precisely, let the A be the two-point subsets of
A: A =1x,yj and c»=a„, when X=(xj or X=1yj,
c »=1 when X=/ or X=(x,yj. For real a„, and

-1 ~ a„, & 1 we may take &VI „=(zGC:IzI & 1j;
hence4

e(«)= Z «~'~rr n.„,
XC A xeX 1&X

does not vanish when «&1. By symmetry Q(«)
does not vanish when «& 1, hence the zeros of
Q have absolute value 1; this is the Lee-Yang
circle theorem.

Let 4 be a real function on (Z )" (v-tuples of
integers mod m, "periodic lattice" ) with 4 (x)
=4(-x), and take A =(Z )'. Let again the A be
the two-point subsets of A: A„=(x,yj, and write
c „=exp[-PC(x—y)] when X=(x,yj and c„„=1
when X=/, (xj, or 1yj. We may then take

where

~„'=1zeC:)z+1~-(1-e"("-))'"j
for @(x-y) ~O,

«C:I« "'" "+lI-(1-e s""')"
Xy

for 4(x-y) ~ 0,
and we find that

e(«)=Z «~'~ m[-p Z ~(-y)l
&x.y}g»

can vanish only when

(-~ ').
yeZ

The region I" is sketched for small and large
values of P in Fig. 1. For small P, I's does not
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FIG. 1. The region I' for small P (left) and large P
(right) .

intersect the positive real axis. Therefore a lat-
tice gas with finite-range interaction has no

phase transition at high temperature. This re-
sult was known' but is obtained here with mini-
mum technicality.

The Lee-Yang circle theorem implies that an
Ising ferromagnet can have at most one phase
transition (at $ = 1). The above proof implies
that the zeros of Q($) remain close to the unit
circle when a small perturbation (possibly many-
body) is added to the original ferromagnetic pair
interaction. From this one can deduce the follow-
ing: An infinite Ising ferromagnet has only one
equilibrium state at $ & 1; in particular, the
thermodynamic limit of the correlation functions
is independent of boundary conditions. '

(2) Proof of theorem. —When the A„are dis-
joint, P is just the product of the P (with dis-
joint sets of variables) and the theorem is trivial.
To prove the theorem in general we first form
the product of the P with disjoint sets of vari-
ables and then obtain P by successive "contrac-
tions. " These contractions (introduced by Asano')
are described in the following proposition, from
which the theorem is immediately obtained.

Lemma: Let A, B be closed subsets of C

which do not contain 0. Suppose that the complex
polynomial

a+ bz, + cz, +dz,z

can vanish only when z,&A or z,EB. Then

0+dz

can vanish only when zE-AB.
Since OEEA, 0(EB, we have aWO. If d=0 there

is nothing to prove. If d 4 0, ad-bc =0, we have

a + bz, + cz, +dz,z, = d(z, + c/d) (z, +a/c)

there fore -c/d C B, and a/c C B, and a +dz van-

ishes only when z = —a/dC -AB.
I et now d & 0, ad-bc 4 0, and write'

p(z) = —(a+ bz)/(c+dz), P(z) =a/dz,

where y, g are now considered as mappings of
the Riemann sphere (add a point at infinity to C,
A, B). If we write ~ = pg ', z, = &uz, is equivalent
to

ab +adz, +adz, + cdz,z, = 0

showing that co~= 1: ~ is an involution. Since 8
is a proper closed set, &u(B) cannot be interior
to B [otherwise also &u'(B) would be interior to
Bj. Thus

Q)(B)A B &g

where -8 is the closure of the complement of B.
By assumption -BC p(A) and since y(A) is closed,
-BCy (A). Hence

(u(B)Ay(A) w g,

or

VN '(B)&V (A)& 9,

or

which proves the lemma.
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