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the experimental data which was V.5&10 ' at 7
=1.39 K and v, =7.8 cm/sec. At that velocity the
vortex line density" I. was about 7&&10' cm/cm'.
Using the latter value of b p„/p we can calculate
an upper limit for the fractional change in densi-
ty per unit length of vortex line per unit volume:
(&p„/p)J '=10 "cm'. This quantity, having the
units of area, can be thought of as representing
a region surrounding the axis of the vortex line
in which the liquid effectively is either excluded
or compressed. Since the residuals obtained
from the fit are both positive and negative and
are of the order of the resolution of our experi-
ment, both alternatives are possible. Assuming
cylindrical symmetry about the vortex axis, a
radius corresponding to this area is 25 times
larger than the critical radius R, which is as-
cribed to the vortex core region using thermo-
dynamic arguments. "'" It should be remem-
bered that this is only an upper limit. Any change
in the average liquid density due to the structure
of the vortex core is probably much less than
our estimate.
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Comments on Long-Wavelength Excitations and Structure Functions
in the Theory of Liquid He at T = 0

E. Feenberg*
S"ashington University, St. Louis, Missouri 63280

(Received 30 October 1970)

Polynomial approximations for the llquld stx'Qctux'e fQnction 8(k) Rnd the enelgy of an
elementary excitation e(k) are found to contain both odd and even powers of k if the inter-
atomic potential falls off asymptotically as ~ . The proof is given under conditions of
low density Rnd weak interaction and hence has only suggestive force in applications to
the real superfluid.

A large number of structure functions occur
in the microscopic theory of liquid 4He, among
them the liquid structure function S{k), the ener-
gy of an elementary excitation ~(k), the kinetic
structure function D(k), the density-density fluc-
tuation function y„, the elementary excitation in-
tensity fullctloll Z(k) and tile occupatloll number
density I)(k). This communication concerns poly-

nomial approximations for S(k) and e{k). Indi-
rectly the argument may suggest the need for
flexibility in choosing approximate forms for
other structure functions near the origin.

The formula

S(k)
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is expected to give a satisfactory representation
of the liquid structure function for small values
of k (k - 1 A ', kk/ms - 0.664). Experimental and
theoretical information on S(k) and on the energy
of elementary excitation's e(k) are consistent with
the estimates' 6

i S,/S, i
« I and S, —-1.46. Pines

and Woo' also obtain an estimate for $4+ 0. It ap-
pears that polynomial approximations for S(k)
may contain both odd and even powers of k. That
this is not an altogether trivial statement can be
seen by examining the Bogoliubov formalism for
the interacting boson system in the limit of low
number density p and weak interatomic potential
v(r). The examination reveals that whether or
not Eq. (1) and the corresponding expansion for
c(k) contain both odd and even powers depends on
the asymptotic behavior of v(r).

Under the stated conditions the dispersion for-
mula for the energy of an elementary excitation
1S

series for S(k) and e(k) contain only, odd powers.
Suppose however that v(r) falls off asymptotically
as x ' so that

a constant, positive or negative. This condition
with TV& 0 fits the actual behavior in the real liq-
uid,

The behavior of v, riear the origin can be stud-
ied by computing 6„v„(the Laplacian in k space
of the function v„):

sink~a„v, = -4m v(r)r'dr
0 kr

4')lt' SlllX X 4=(a,v, ), ,——, -1 v —x'dx. (4)
0 X

The integral can be evaluated in the limit of
small k. The potential is replaced by. the asymp-
totic form Wk'/x' with the results

q(k) = [(k2k /2m)2+2pv k k /2m]ii

= hks [v, /v, + (h k/2ms)') ' '
in which

"sinks
v, =4m v(r)r'dr

0 kr

(2)

6:„v = (b.„v )„+m2Wk +O(k2)

v, =v, (2m/3-) f, v(r)r'drk'

+(n'/12)Wk'+Q(k'). (6)

Equations (2) and (6) yield

ms' =pu, &0, v, &-(kk/2ms)'v, . (3)

Also, in agreement with the Bijl-Feynman formu-
la for the energy of an elementary excitation,

S(k) = k'k'/2m e(k)

=(Sk/2ms) [v~/v, +(hk/2ms)'] ' ' (4)

Equation (4) is given directly by the Bogoliubov
formalism if a uniform level of approximation is
maintained in evaluating the liquid structure func-
tion and diagonal matrix elements of the Hamilto-
nian (neglect of biquadratic forms in the creation
and annihilation operators for excited single-par-
ticle levels' '). Equations (2) and (4) and a for-
mula for the ground-state energy identical with
that. given by the Bogoliubov formalism are all
generated by the optimum Jastrow-type trial
function in lowest order in the appropriate small
parameter. The parameter referred to is n
=1-g(0), a measure of the departure of the radi-
al distribution function g(r) from uniformity. io

If r "v(r) is integrable for all n & -2 (as is the
case for finite linear combinations of Yukawa
and Gaussian functions), the power series for v,
contains only even powers and the corresponding

(7)

and a, similar formula for e(k).
Equation (7) exhibits a mixture of odd and even

powers of k in a polynomial approximation for
S(k); the same type of mixing is found in e(k).
The mixing occurs because the potential is as-
sumed to fall off asymptotically as r '. Related
expansions involving different mixtures of odd
and even powers can be derived for potentials
which fall off as x, r, etc.

These results have only suggestive force in ap-
plications to the real superfluid. It is clear,
however, that no a priori justification exists for
postulating that a polynomial approximation for
e(k) contains only odd powers (although the em-
pirical trial using only odd powers appears to
give a satisfactory fit'). In this case the appar-
ent absence of even powers may be a problem
for the basic theory. Also the possibility that
some structure functions [i.e., the elementary
excitation intensity function Z(k) ] are pure cases
(without mixing) should be established, if true,
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by explicit argument.
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We study the zeros of the partition function of a classical spin system and compute a
region of the complex fugacity plane where they necessarily lie. We recover the Lee-
Yang circle theorem as a special example; we also find that a spin system with finite-
range interaction has no phase transition at high temperature.

Asano's recent results' have revived interest
in the celebrated Lee-Yang circle theorem, ~ by
giving it a more conceptual proof. Here an ex-
tension of the circle theorem to noncircular re-
gions is proved and applied to problems in statis-
tical mechanics.

(1) Statement of results. —Let P be a complex
polynomial in several variables, which is of de-
gree 1 with respect to each, i.e. , A is a finite
set and

P(z~) = Q c»z,
xCA

where z~ = (z„)„,~, and z =ll„,» z„.
Theorem: Let (A ) be a finite covering of A,

and for every xGA let A „be a closed subset
of the complex plane C such that OEPIVi „. For
each o. we assume that the polynomial

P (zA )= Q c„xzx
XC~o

does not vanish when z„(E—ll (-M „), all xgA.
Then the polynomial

P(z~) = Q z pc~(A„nx)
xCA

does not vanish when' z„Q -g„(-M „), all x&A.
The proof is given in Section 2. This result ex-

tends a theorem by Lee and Yang, ' and can be
used in the same way to obtain regions free of
zeros for polynomials in one variable. More
precisely, let the A be the two-point subsets of
A: A =1x,yj and c»=a„, when X=(xj or X=1yj,
c »=1 when X=/ or X=(x,yj. For real a„, and

-1 ~ a„, & 1 we may take &VI „=(zGC:IzI & 1j;
hence4

e(«)= Z «~'~rr n.„,
XC A xeX 1&X

does not vanish when «&1. By symmetry Q(«)
does not vanish when «& 1, hence the zeros of
Q have absolute value 1; this is the Lee-Yang
circle theorem.

Let 4 be a real function on (Z )" (v-tuples of
integers mod m, "periodic lattice" ) with 4 (x)
=4(-x), and take A =(Z )'. Let again the A be
the two-point subsets of A: A„=(x,yj, and write
c „=exp[-PC(x—y)] when X=(x,yj and c„„=1
when X=/, (xj, or 1yj. We may then take

where

~„'=1zeC:)z+1~-(1-e"("-))'"j
for @(x-y) ~O,

«C:I« "'" "+lI-(1-e s""')"
Xy

for 4(x-y) ~ 0,
and we find that

e(«)=Z «~'~ m[-p Z ~(-y)l
&x.y}g»

can vanish only when

(-~ ').
yeZ

The region I" is sketched for small and large
values of P in Fig. 1. For small P, I's does not
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