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A. tight-binding calculation of the band structure of magnetite with Verwey ordering
alone does not, for any strength of interatomic Coulomb energy, yield insulating behav-
ior; for this, additional orderings in transverse directions are required. Below the
Verwey temperature T&, iron B-site charge densities are fractional (nonionic), contin-
uous functions of T, and the gap is probably indirect with T-dependent band extrema (T
& Tv). There is semimetallic behavior above Tv. Multiple orderings allow a natural de-
scription of the extra Mossbauer spectra and neutron- and electron-diffraction patterns
recently observed.

Originally, the low-temperature (119 K) metal-
insulator transition in magnetite (Fe,O,) was de-
scribed as an ionic order-disorder transition,
the low-temperature phase consisting of alter-
nate layers of Fe" and Fe" B-site ions. Be-
cause of this ordering, electrons could hop only
at the cost of a large intra-atomic Coulomb re-
pulsion. Above 119 K (T v), because of the disor-
der, electrons were no longer inhibited from
hopping, and the observed conductivity is in fact
100 times larger above T v than below. Although

many refinements' of this picture were subse-
quently introduced, the two essentials of the
model, namely, its ionic nature and the type of
ordering (alternate planes of Fe" and Fe", Ver-
wey order), remained unchanged.

It is now clear that the above picture is inade-
quate. Mossbauer' measurements are separable
into five sets of spectra below T&, one for the
A-site Fe ' ion and four for the B-site ions.
Neutron-' and electron-diffraction' studies show

many more peaks, again below T&, than those

describable as due to Verwey ordering.
We have recently' introduced a collective-elec-

tron description of magnetite which allowed us
to break the first constraint mentioned above,
namely, the description solely in terms of 2+
and 3+ ions. By oversimplifying to a one-dimen-
sional model, we were able to calculate self-con-
sistently the temperature dependence of an "or-
der parameter" (the charge difference between
two ions in the unit cell). The order parameter
was proportional to the energy gap between va-
lence and conduction bands, and vanished at the
transition temperature, leaving a half-filled band
at higher temperatures. There is strong experi-
mental support and theoretical precedent for a
band picture. ' Although the charge around any
site was no longer an integer, the symmetry was
the same as that of Verwey, i.e., there was one-
dimensional order.

We now find qualitatively different features in
three dimensions, and the concept of a multiple
order parameter arises perforce. In the magne-

236



VOLUME 26, NUMBER 5 PHYSICAL REVIEW LETTERS 1 FEBRUARY 197'

tite structure Verwey ordering alone can never
produce an insulator, but ordering along the
transverse axes is also required. The calcula-
tion is based on the following Hamiltonian:

H = ~ e;„,sc. ; c, s+ Q u, ~sn; n,. s. (1)
iy, n8 i o. ,g8

The i and j sums are over the fcc lattice of B-
site ions. o,'and P refer to the four ions within
the unit cell. c; ~ creates an electron in the
Wannier state i, n, and n;~=c;„c;~.

There are no spin indices; the very large
Hund's-rule energies rule out spin-flip transi-
tions. Thus, we regard the spin-down d bands
as completely full and inert for our purposes.
Crystal fields further split the five spin-up d
bands into two doublets, and a singlet lying low-
est. ' It is these singlet states which are de-
scribed by the Hamiltonian (1). Since magnetite
has two spin-up electrons in the unit cell, the
Brillouin zone is half full.

We now make the Hartree-Pock approximation,

(ng=n„a =1, 3,

(ng=n„n =2, 4.

HH„ is again of the form (3), but with

~ = s + (-1)"um „

(4)

h is proportional to overlap and potential inte-
grals, and is independent of k; T 8 is the vector
connecting sites a and P in the unit cell; and e
is the energy of the singlet level. The term pro-
portional to u(n) has been dropped, since it only
shifts the energy by a constant. (This term
should be considered to have already contributed
to the crystal-field splitting mentioned above. )
Results of a diagonalization of (3) are given in
Fig. 1, where the eigenvalues E(k) of (3) are
plotted for k ll [001]. We see that the high-tem-
perature phase is semimetallic, two bands over-
lapping at the Fermi level, determined by re-
quiring the four-band zone to be half full.

Next, suppose we attempt to describe the T
&Tv phase by Verwey ordering, i.e.,

n; n,.s-(ngn, s+(ns)n; (2)

where angular brackets indicate both tempera-
ture and quantum averages. We consider the
"disordered" phase first. Using (2) with n =ns
=-,' in (1), and making a Fourier transform of
the operators appearing in (1), we find

HHF =Qge„s(k)a (k)as(k),
k a8

where, in tight binding,

e„s(k) =k[1+exp(2ik T„s)], e =e.

m g Pl/ fl2

This ordering causes the threefold degenerate
level at k = 0 to spbt in three, but does not break
the twofold degeneracy at k= [100] and [010].
This is illustrated in Fig. 2 for umph 0 4 Be-
cause of this degeneracy and the fact that the or-
dering of the A =0 levels is fixed, no gap appears
in E(k), no matter how large we choose um, .
Thus within the band scheme, Verwey order

Evs. k

[100j

NO ORDER

[100]

SAIIIIE AS k II [010]
lF m2=0

FIG. 1. E vs k along t001] in the metallic phase.
Note the two overlapping bands. (There are two elec-
trons per unit cell. )

FIG. 2. E vs k along t100] for Verwey order alone
(m, ~ 0). The bandwidth is 1. Two bands still overlap
no matter how large em&.
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alone cannot yield insulating behavior. This is
in striking contrast to the one-dimensional mod-
els, where infinitesimally small interactions
make the metallic state unstable.

We next lower the symmetry by making n, Wns,

n, Wn, (ordering along the a and 5 axes), and fi-
nally n, -n, 4n, -n, (a-axis ordering different
from b-axis ordering). We then have two more
order parameters

+ [00I]

QN1

uN2 =t

ON3 =)

2m, = (n, -n, +n, -n, ),

2m 3
-Fl, -Pl3-(52-Pl/) ~

We have diagonalized HHF with these three order
parameters (for charge neutrality the average
number of electrons per cell was fixed at two)
for different values of um, /h, um, /h, and um, /h.
We find that semiconduction can be achieved pro-
vided m„m, e 0, at the expense of large u/h.
However, the u/It value required to split the
bands completely can be considerably lowered by
making m3 0, as well as m„m, 0. Figure 3
shows the band structure along [001] for um, = 2,
um, = 1, and um, = 1. The valence-band maximum
for this case is actually near an I. point. We be-
lieve that a self-consistent calculation will re-
quire all threes's to be nonzero in the T &Tv
phase. This of coUI'se means foUI' dlffel ent
charge densities i.n the unit cell, accounting for
the four distinct 8-site Mossbauer spectra seen
below T v, and for many of the observed neutron-
and electron-diff raction peaks.

The orderings so far described have not affect-
ed the crystal symmetry, i.e., we restricted
ourselves to breaking site equivalence within the
cubic unit cell. Lowering the crystal symmetry
by doubling the unit cell, for example, introduc-
es at least one more order parameter. This ex-
tra broken symmetry would account for the (h, k,
l + —,') lines seen in both neutron and electron dif-
f1 action.

As a final point, we note that the valence- and

conduction-band edges are at different points in
the Brillouin zone. Both the size of the indirect

FIG. 8. E vs k along [001). mq, m&, m3 ~ 0. There
are gaps in all directions. The valence-band maximum
is at an I. point for the m; chosen. The conduction-
band minimum is near $001]. For these m& and m2,
the indirect gap disappears for Qsl p

~ 0.85.

gap and the positi. ons of the extrema should be
temperature dependent.
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