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New theoretical results are presented for the probability of exciting surface oscilla-
tions (optical phonons or plasmons) by fast electrons reflected from the surface of a
thin crystal film. Both specular and Bragg reflections are considered and the effect of
the finite slab thickness is included. The theory explains successfully the energy-loss
spectra measured by Powell on metallic surfaces and recent measurements by Ibach on

ZnO surfaces.

Recently the authors have proposed a new semiclassical theory of the characteristic energy-loss
spectra of fast electrons in solids.! In this approach, the electron is treated as a classical particle on
the well-defined trajectory ¥(f) and acts as a time-dependent perturbation, linearly coupled to the quan-
tized field of elementary excitations (e.g., optical phonons or plasmons). The response of the system
can be calculated exactly to give the field excitation probability and hence the energy-loss spectrum.
The trajectory could be chosen arbitrarily so that one could consider reflection cases (both specular
and Bragg reflections) as well as the transmission case treated in the dielectric theory*? of energy-

loss spectra.

In this Letter we present general formulas for the loss probability function appropriate to the specu-
larly or Bragg reflected electron at the surface of a slab of arbitrary thickness. Application of the
theory to the inelastic scattering by surface optical phonons in ZnO and surface plasmons in metals
leads to scattering probabilities in excellent agreement with recent experimental data obtained by

Ibach* and Powell.’

Let wt(k’) be the frequencies of the odd (even) modes of long-wavelength surface excitations (either
phonons or plasmons) in a slab of thickness 2a. The dispersion relation for these modes can be im-

plicitly written as®

sinh2ka =+2€(w)/[€(w)-1]

(1)

[which is equivalent to the relation (3.23a) of Ref.ﬁ], where K is a two-dimensional wave vector paral-
lel to the surface and €(w) is the frequency-dependent dielectric function of the material. The proba-
bility that the electron loses an energy 7w is found to be!

P(w)= %[:mdte"“" exp| Jd?(Q,e i+t +Q e 1v-1)], (2)
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where P, is the no-loss probability (strength of the no-loss line) and where

Q (E)=ezwp2 Sinhoka -y, 1 . 1 2
* 4t w,(k) kv +i(w, =K-¥,) kv, =i(w,~K-¥7))|’

3)

w, is the bulk plasma frequency and is given by w,?=4me?/m in the plasmon case and by w,? =4w (¢,
—€.)/(€-+1)? in the phonon case (ion plasma), where w, is the reststrahlen frequency and ¢,, €. are
static and high-frequency dielectric constants. v=(v,,v,) and v’ = (v;,v,’) are the constant velocity
components parallel and perpendicular to the surface for the incident and reflected electrons, respec-
tively. In the above formulas, excitation damping and radiative losses are not considered and we have
assumed that the electron does not penetrate sufficiently far into the material to interact with bulk ex-
citations.

From (2), the ratio of the one-phonon (plasmon) loss to the no-loss probabilities is given by

P Hw)/Py = Jd%Q (K)6(w-w,(K)). (4)

We can describe the loss spectrum using P,*(w) if it is small so that multiple losses are negligible or,
as is often the case with phonons, when the threshold for double losses is above the band of surface
phonon energies. After integrating (4), one finds

3 2 -
P *w) =5 2¢ Ok —k,) Im_f;l_z[(ai_,_i)z_.},z]-l/z + . 1’2[(ail+i)2_y12]'1/2
L L

P, Ka @=1 k2 \

2 1
v, vy tila/y-a,y)

+.

(e, +i)2—7/z]'”2—7’[(a;+i)2—7’2]'”2}}, (8)

where 6 is the step function, 6(x)=1 for x>0 and 0 for x<0; %, is the maximum momentum transfer
determined by the aperture of the spectrometer!; and «,, 7, and k, are given by

=Y TR A S ol
a, vEy L k, Zaln<i1+€>'

(6)

From Egs. (3) or (5), we see that the loss probability consists of the incidence and reflection loss
probabilities (first two terms) plus the interference of these two losses (third term).” For the specu-
larly reflected beam (¢ =a’, y=9’), formula (5) reduces to

P Hw) __2e* 2€ Ok ,~k.) na . 21-i/a (o, +7) |
—J};—_;ﬁ €2_1 kizv_Lz Im{[(ai+l) -Y ] / |:1+ (ai*'i)z“'}’zjl;. (7)

Single-excitation spectra of ZnO and LiF crystal films as predicted by Eq. (7) are illustrated in Fig. 1
for several values of the parameters. For comparison, we have also plotted the Lorentzian

Pla==)_1 ¢ e.tl, [ -1 } (8)
P, wpliv, ¢+1 1+ e(w)

describing the one-phonon excitation probability for an electron beam reflected from a semi-infinite
crystal [see below, Eq. (13)]. The broad structures arising from the spatial dispersion of the surface
phonons should be easily observable: They dominate the broadening due to phonon damping for thick-
nesses up to several hundred angstroms. For very thin films one observes a characteristic splitting
of the line at the limiting surface phonon frequency w,. The main contributions to the spectrum shift
away from w,, where only a weak peak survives. One should notice that for high-energy electrons
[LiF case, Fig. 1(b)], mostly long-wavelength surface phonons (with frequencies close to w, and w;)
are excited, so the slab appears very “thin” even for a few thousand angstroms thickness. Experi-
mentally these peaks should not be confused with volume excitations. For all thicknesses, the spec-
trum diverges at w, like 1/(I1+€lIn?|1+€), € ~~1, as a result of the singularity in the phonon den-
sity of states. Detailed measurements on thin films which could be compared with the above predic-
tions do not seem to have been performed.

In the case of a very thick slab (k. > 1) or a semi-infinite medium, one can go one step further and

230



VOLUME 26, NUMBER 5 PHYSICAL REVIEW LETTERS 1 FEBRUARY 1971

+
R/
¢ 360 A
P1/ By g 840
3001 (a) 50 1200 (b)
40A 20 «
160,
200 g0
30
20
1004
10
0 [ 0 i |
Wy W W W Wy Wg W, W

FIG. 1. (a) Theoretical single-excitation loss spectra for a 25-eV electron specularly reflected by a ZnO film at
45° incidence and for various thicknesses. For comparison, the Lorentzian at w =w (half-width Aw/w =0.02, see
optical constants of ZnO in Ref. 8) gives the loss spectrum for a semi-infinite crystal. The absolute values of the
loss probabilities are obtained by multiplying the ordinates by 20pg/wp, where apg=1/137 is the fine structure con-
stant. (b) Single-excitation spectra for LiF crystal slab, 25-keV beam at 10° grazing incidence and various thick-
nesses.

from (2) obtain the full spectrum of multiple excitations, using the limit

lijgfdzk(Q+e-iw+t+Q~e-iw-t)zQe-iwst’ (9)
where

w,=w,/V2 (plasmon) (10)

=[(eo+1)/(ew+1)]1/2wT (phonon) (11)

is the degenerate surface-mode frequency and

Q- 2)z—}ﬂa,y>+—é;1—,F(a',w)+1(a,a';y,w)}, Flo, ) =tmInfa+i+[@+if—212),  (2)

a=w,/k.v,, Ibeing a rather complicated, generally negligible interference function. For the specu-
lar beam, (12) reduces to

E%zfsﬁz—;{ﬂa, »)-Re[(a +1)2-y2]"2), (13)

Q=
Equations (2) and (9) describe the spectrum composed of 6-shape lines equally separated by w,, i.e.,
the Poisson distribution. @ gives the ratio of the strengths of the one-phonon (plasmon) and no-loss
lines. We shall check the validity of (12) and (13) by comparing them with the recent experimental
spectra.

First we refer to Ibach’s measurements? on ZnO surfaces. Figure 5 in Ref. 4, which corresponds
to the specular beam at 45° incidence, gives @,,=(1.3 eV'2)/YE, where E is the electron beam energy.
From our Egs. (12) and (13) and using the dielectric data® appropriate to the (1100) face of ZnO (¢,
=7.8, €,=3.7), we find Qsp=1.58/\fE, in reasonable agreement with the experimental result. If we use
the data for the (0001) face® (¢,=8.6, €.,=3.75), we find QSP=1.66/\fE, in agreement with the observed
trend towards a higher loss for this face.® Ibach also measured® the loss spectrum of the (01) Bragg
reflection for a 39-eV electron beam. In his experimental setup, the total scattering angle is kept
constant (90°) and the Bragg beam is detected by the spectrometer when the properly oriented crystal
has been rotated through an angle of 25°, This geometry therefore corresponds to 20° incidence and
70° reflection angles. From our expressions (12) and (13) we compute the following ratio of the one-
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phonon line strengths in the (01) Bragg beam and in the specular beam:

Qq _v.(45%[ 1 17
Q2 [vl(zo")*vmo")}"l"l‘ 14)

Ibach’s measured ratio® is precisely 1.4 !

Now we consider energy-loss measurements by Powell® on vairous metal surfaces. We notice from
(13) and (10) an interesting result, i.e., that the loss probability does not depend on w; (> @ in these
experiments), @, reducing to

Qp=(e?/Mw /2, (15)

an expression independent of the material under study. For example, taking Powell’s 8-keV beam at
89° (grazing) incidence (6 =2° total scattering angle), we find from (15) @,,=3.7. Therefore the spec-
trum which is given by the Poisson distribution should culminate around the 3-plasmon loss line. This
is indeed observed (see Fig. 3 in Ref. 5). Relation (15) can be written as

_me* 1 _0.065
P 2w cos¢ cosg’

Q (16)
where ¢ is the incidence angle. The predicted coefficient 0.065 is in remarkable agreement with the
empirical one which was used to fit the experimental points for liquid Al (see Fig. 6 in Ref. 5).

To conclude, we have presented new results for the energy-loss spectra of fast electrons reflected
from the surface of a thin film and inelastically scattered by surface excitations. Using the appropri-
ate dielectric data, we studied the loss spectra due to optical phonons in polar dielectrics and plas-
mons in metals, For a very thick crystal, the predicted loss spectra, including multiple losses,
agree very well with recent experimental data. In this theory, one could also treat plasmon excita-
tions in doped semiconductors or a combination of phonons and plasmons in polar semiconductors.
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