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phase shift with respect to free waves; from 1 to
4 Ry it is due mostly to the non-Coulomb shape
resonance effect in the f -wave channel.'® Above
4 Ry, the only major variation of 8 with energy
occurs principally because of the Cooper min-
imum at €=5.6 Ry and the associated change in
sign of R,,,. At still higher energies g is a
smooth function of €.

At this point it is worthwhile to point out that
this calculation does not treat exchange exactly
and omits correlation and spin-orbit effects
which may be important.!” Indications are that
exchange effects will not significantly affect the
angular distribution.’® As for the other effects,
while they may change the positions of the min-
ima and maxima in 8 somewhat, it seems unlike-
ly that they could greatly affect the overall oscil-
latory behavior.

In conclusion, we hope that experimental
studies, as well as further theoretical work, will
provide more information on this phenomenon.
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Time Evolution of Simple Quantum-Mechanical Systems.
II. Two-State System in Intense Fields*
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The Schrodinger equation for a two-state quantum~mechanical system with sinusoidal
perturbation is numerically integrated with respect to time. From these results a gen-
eral formula for the induced transition probability (as a function of time, perturbation
frequency, and perturbation strength) is extracted.

There has been a recent surge of interest in
the properties of quantum systems in intense, co-
herent radiation fields.!™ We present here those
preliminary results of a more general investiga-
tion which are relevant to this problem.

Consider a two-state system with states 10)
and [1); we introduce an external time-dependent
driving field in the Hamiltonian:

H=H,+V sin(wt + ),
where

H,|0)=0, Hy|1)=hw,|1),

©lvioy=C1lvi1=0,

220

and :
©lviD=v,=lvio.

The time-evolution operator in the interaction
representation satisfies the Schrdodinger equa-
tion*:

in(8/30U () = V, (DU, (8). (1)

Since all the matrices in (1) are two-by-two, it
is a trivial matter to integrate the equation nu-
merically with initial condition U;(0)=1. In Fig.
1 we show the induced transition probability,
I{11U,()10)P, as a function of time for several
values of w/w,, with 6=0 and the perturbation
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strength ]le /7w,=0.1. (This perturbation strength is enormous compared with those in the physical
systems to which the two-level system is meant to be an approximation; however, this strength was
used in initial runs to induce transitions on a reasonable time scale. It was our expectation, since
borne out, that the results for weaker perturbations might be simpler but would not be more compli-

cated.

It is seen from Fig. 1 that the transition probabilities all have the overall form a sin®*(¢m/7) modulated
by some weaker and higher frequency oscillation. Changing the perturbation phase factor & (graphs
not shown) shifts the phase of the high-frequency component, and slightly shifts the maximum ampli-
tude, but does not alter the overall behavior. For weaker perturbations, the general form is the same
with different periods and amplitudes. We may summarize a large number of computations by writing
the slowly varying part of the transition probability as

(Vo,/R)?

0,0 P= 110,010 =S st ] (wmwg (5] (2

Equation (2) is plotted in Fig. 1 as solid lines.
The solid line does not go through the “center”
of the modulation in every case, but the effect
of & is to shift the modulation such that (2) is ef-
fectively an average over phase 6. Nevertheless,
(2) fits the overall behavior very well.

One significance of the result (2) is as follows:
The maximum amplitude is given by (writing V
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FIG. 1. Graphs of the induced transition probability
640 (B 2= [(1|U;(£)]0}|? for a two-level system for var-
ious perturbation frequencies w/w,, with perturbation
strength V/%=0.1w, and perturbation phase 6=0.
Dotted lines are numerical integration and solid line is
from Eq. (2). (The graph for w =w, has been cut at
tw,=36 and shifted to the origin.)

r for V)

g Y/
T (w=wy)? +(V/h)?

and this occurs at ¢ =7/2 where

ok (V/R)? vz
=V [(w—wo)z +(V/h)2]

Thus, if after time 7/2 the transition probability
is a, on a long-time basis we are inducing tran-
sitions at the rate of

2a (V/R)?
R = emay + (VR (3

per unit time. Thus exactly on resonance the
“transition rate” is proportional to |V, | rather
|V, B, Clearly, with ordinary perturbation
strengths and light sources, this effect would
never be seen; however, with intense, highly
monochromatic fields, behavior represented by
(3) dominates.

Finally, we note that exactly on resonance the
dotted curve in Fig, 1 is, within the plotting ac-
curacy, identical to the approximate result

1630 2= <1l expl(1/im) [ ¥, (¢)az' ]| ) 2,

A more detailed discussion will be presented
elsewhere.
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