tic planes in the smectic A phase orient normal to a surface.

One of the authors (S.V.L.) takes pleasure in acknowledging the hospitality and cooperation of Professor John Lamb and his colleagues at the University of Glasgow.

¹A. J. Barlow and J. Lamb, Proc. Roy. Soc., Ser. A

253, 52 (1959).

²D. Vorländer, Trans. Faraday Soc. 29, 902 (1933).

³A. J. Barlow, A. Erginsav, and J. Lamb, Proc. Roy. Soc., Ser. A 298, 481 (1967).

⁴I. G. Chistyakov, L. S. Schabischev, R. I. Jarenov, and L. A. Gusakova, Mol. Cryst. Liquid Cryst. <u>7</u>, 279 (1969).

⁵D. Vorländer, Phys. Z. 31, 428 (1930).

⁶E. Friedel, C. R. Acad. Sci. <u>180</u>, 269 (1925).

⁷E. F. Carr, Phys. Rev. Lett. <u>24</u>, 807 (1970).

Superfluidity in Quantum Crystals

R. A. Guyer

Department of Physics and Astronomy, University of Massachusetts, Amherst, Massachusetts 01002 (Received 11 December 1970)

The speculations of Chester, Andreev and Lifshitz, and Leggett concerning the possibility of Bose-Einstein condensation and/or superfluidity in quantum crystals are examined. The existing body of experimental data on these systems places extremely strong constraints on the experimental realization of these speculations.

Recently Chester, ¹ Andreev and Lifshitz, ² and Leggett³ have speculated about the possibility of the occurence of Bose-Einstein condensation and/ or superfluidity in solids. Each of these speculations has contained the suggestion that the most likely candidates for the observation of this superfluidity is the quantum crystal, solid ⁴He. The purpose of this paper is (1) to describe what we believe to be the essential physical content of each of these speculations and (2) to scruntinize them in light of the large body of data on quantum crystals.

It is useful at the outset to introduce a model Hamiltonian which gives an adequate description of the important particle motions in quantum crystals and which provides a concrete framework on which to base our discussion. We take the particles in solid ⁴He to be described by

$$\Im \mathcal{C}_{PM} = \sum_{R} \epsilon_0 b_R^{\dagger} b_R + \sum_{RR'} t(RR') b_R^{\dagger} b_{R'} + \varphi_0 \sum_{R} b_R^{\dagger} b_R^{\dagger} b_R b_R, \qquad (1)$$

where b_R^{\dagger} creates a ⁴He atom in the ground state at lattice site R.^{4,5} The energies ϵ_0 , t(RR'), and φ_0 are ϵ_0 , the energy of a particle in the ground state at lattice site R; t(RR'), the energy associated with tunneling from lattice site R to lattice site R' (approximately the off-diagonal kinetic energy); and φ_0 , the hard-core energy associated with double occupation of a lattice site.⁶ The particles may move through the solid because of t(RR'), the tunneling term, but they are hindered in their motion by the strong repulsive interaction, the hard-core term. For the purposes of this model the numbers ϵ_0 , t, and φ_0 can be taken to be about 20, 0.1, and 10 K, respectively.

The particle motions that are necessary to have a superfluid component in the solid are difficult to achieve because of the hard-core repulsion between pairs of particles. We may partially avoid this difficulty by taking the T = 0 ground state of the solid to contain a finite number of vacancies.

Case I. – At T = 0 the ground state of the solid is N particles described by \mathcal{H}_{PM} on $N + n_v$ lattice sites. Here n_v is the number of vacancies in the ground state. These vacancies are called groundstate or "frozen-in" vacancies. The presence of n_{v} vacancies in the ground state does not mean that there are n_v vacant lattice sites. It means that there is a single-particle density in the vicinity of each lattice site which is less than 1, i.e., $N/(N+n_v)$. In his discussion of Bose-Einstein condensation in solids. Chester suggests that the usual proofs that this condensation cannot occur in solids are invalidated by the presence of "frozen-in" vacancies in the T = 0 ground state.¹ The vacancies of Andreev and Lifshitz, which have a condensate and lead to the superfluid properties they discuss, are vacancies present in the T = 0 ground state.⁷ Thus we take case I to represent the physical content of the speculations of Chester and of Andreev and Lifshitz.

V (cm ³ /mole)	Phase	Bandwidth (K)	t (K)	Excitation temperature (K)
		³ He		
24.7	bcc	~10	0.6	5-6
22.0	bcc	9	0.5	9
20.0	bcc	6	0.4	14.5
19.0	hep	? 4 T T -	?	>20
		·He		
21.0	bee	~8	0.5	~5-6
21.0	hcp	?	?	~15

Because of the tunneling term in Eq. (1), the vacancies in solid ⁴He exist as vacancy waves.⁸ The motion of a vacancy wave through the solids yields motions of the single-particle density that could lead to superfluidity. The thermally activated vacancy waves in solid ⁴He have the dispersion relation

$$\hbar\omega(k) = \varphi_0 - 2t(\cos k_x \Delta + \cos k_y \Delta + \cos k_z \Delta), \quad (2)$$

where Δ is the near-neighbor distance and we have used simple cubic geometry. The vacancywave bandwidth 2zt and the vacancy-wave excitation temperature φ_0 -6t are known from NMR experiments⁹ (see Table I). If we assume that the ground-state vacancies have the same dynamics as the thermally activated vacancies, then the ground-state vacancy waves have the dispersion relation¹⁰

$$\hbar\omega(k) = -2t(\cos k_x \Delta + \cos k_y \Delta + \cos k_z \Delta). \tag{3}$$

The system of n_v ground-state vacancies will undergo a transition to the superfluid state at temperatures such that the thermal de Broglie wavelength is comparable with the interparticle spacing, $\lambda_T^3 = [\hbar/(2m * k_B T_c)^{1/2}]^3 \approx V/n_v \approx \Delta^3 N/n_v$, where m^* is the effective mass deduced from Eq. (2). For $n_v \approx N$ we have $T_c \ll zt/10 \approx 1$ K, using t ≈ 1 K from Table I.

How many ground-state vacancies are present in solid ⁴He? There are two tests in the NMR data on ³He and ³He-⁴He mixtures that bear on this point.

(1) There is direct evidence about the presence of vacancy waves in solid ⁴He in the experiments of Richardson and co-workers.¹¹ These experiments see the motion of vacancy waves in ⁴He through their effect on small concentrations of ³He which serve as probe particles. Richardson and co-workers find that (a) the vacancy-wave bandwidth is about the same in ⁴He as in ³He,

(b) the thermally activated vacancies in bcc 4 He have an activation energy of about 6 K, and (c) the thermally activated vacancies in hcp ⁴He have an activation energy of about 15 K. The data of Richardson and co-workers at $V = 20.0 \text{ cm}^3/$ mole and T = 1.5 K can be understood qualitatively and quantitatively by the presence of a concentration of 10⁻⁴ of thermally activated vacancies.¹² Thus we conclude that the number of ground-state vacancies in ⁴He is certainly less than $10^{-4}N$. For this limit, $n_v = 10^{-4}N$, the transition to the superfluid would occur at $T \ll 50$ mK.

(2) If we argue that the energetics of vacancy formation are the same in ³He as in ⁴He, then if there are ground-state vacancies in ⁴He they are also very likely to be present in ³He and vice versa. Are there ground-state vacancies in ³He? The NMR data of Giffard and Hatton¹³ at V = 20.0 $cm^3/mole$ and $T \approx 0.4$ K can be understood by the presence in the system of a concentration of 10^{-14} of thermally activated vacancies. In the absence of an argument for why the ground-state vacancy waves obey a different dynamics and have a different effect on an NMR experiment than the thermally activated vacancy waves, we must take this result to mean $n_v({}^{3}\text{He}) < 10^{-14}N$. This is equivalent to $n_v({}^{3}\text{He}) \equiv 0$. Further, in the absence of an argument for why the energetics for vacancy formation in solid ³He should be greatly different from that in solid ⁴He, we can transfer this result to solid ⁴He and conclude that $n_{\rm u}({}^{4}{\rm He}) \equiv 0.{}^{14}$

We believe that there are no ground-state vacancies in quantum crystals.

Case II. -At T = 0 the ground state of the solid has N particles described by \mathcal{K}_{PM} on N lattice sites. For this case the possible motions available to the particles in the solid are highly constrained. The primary mechanism of particle motion is the cooperative tunneling process which permits particles that are near neighbors of one another to change place. When the particles are tagged by spins this process is described by a pseudospin Hamiltonian and leads to the Heisenberg antiferromagnet description of solid ³He.^{5,9} Let us extract from \mathcal{H}_{PM} the part which describes the cooperative tunneling process. We write

$$\mathscr{H}_{PM} \to \mathscr{H}_{T} = \sum_{R} \epsilon_{0} b_{R}^{\dagger} b_{R} + \sum_{RR'} \frac{t(RR')^{2}}{-\varphi_{0}} n_{R} n_{R'}, \qquad (4)$$

where $n_R = b_R^{\dagger} b_R$. The second term in this Ham-

 $\hbar\omega(k) = -M(k) = -(t^2/\varphi_0) 2(\cos k_x \Delta + \cos k_y \Delta + \cos k_z \Delta).$

We take case II to represent the physical content of the speculation of Leggett. The coherent diffusion process¹⁶ called for by Leggett is the coupled motion of the single-particle density described by the modes in Eq. (5). Bose-Einstein condensation in this solid will occur at temperatures given by $\lambda_T^3 \approx \Delta^3$. Using the effective mass m^* from Eq. (5) in the calculation of λ_T leads to the condition $T \ll zt^2/10\varphi_0$. The superfluid properties of the solid will be seen at temperatures about an order of magnitude below the bandwidth $2zt^2/\varphi_0$. For ³He at 20 cm³/mole the exchange interaction J has strength 20 μ K.⁹ The highest density ⁴He solid is at about this molar volume so that a very optimistic estimate of t^2/φ_0 for solid ⁴He is 20 μ K. Thus we estimate that the solid must be carried to temperatures well below 0.02 mK $\approx zJ/10$ for the superfluid transition to occur. Leggett suggests that the superfluid fraction of the total density, ρ_s/ρ , is on the order of $(t^2/\varphi_0)(\hbar^2/m\Delta^2)^{-1}$. This ratio is reasonably reliably calculated using the theory of tunneling due to Guyer and Zane.^{4,15} For hcp ⁴He at $V \approx 20 \text{ cm}^3/$ mole we have $t^2/\varphi_0 \approx 3 \ \mu \text{K}$ and $\rho_s/\rho \approx 1 \times 10^{-6}$. The superfluid density is very likely about two orders of magnitude smaller than the estimate of Leggett.

There are two possible mechanisms by which the particles in solid ⁴He can acquire the mobility that is necessary to permit the kinds of motions that would lead to Bose-Einstein condensation and superfluid phenomena. These mechanisms are (1) motion of the single-particle density due to the presence of "frozen-in" or ground-state vacancies, and (2) motion of the single-particle density due to the cooperative tunneling of pairs of particles. We have argued that the NMR data on solid ³He and solid ³He-⁴He mixtures provide strong evidence for there being <u>no</u> ground-state vacancies in solid ⁴He. Thus Bose-Einstein coniltonian couples the single-particle density at lattice site R to the single-particle density at lattice site R'. In solid ³He the coupling constant $t(RR')^2/\varphi_0 = M(RR')$ is the exchange interaction J. The quantity $t(RR')^2/\varphi_0$ for solid ⁴He can be determined from experiments on ³He and the use of reliable scaling procedures.^{4, 15} The single-particle density described by Eq. (4) has a set of normal modes that are found by examining G(RR') $= i\langle Tb_R(t)b_{R'}^{\dagger}(t')\rangle$. In the Hartree approximation the normal modes of the single-particle density are (for a cubic crystal)

(5)

densation due to the presence of ground-state vacancies is ruled out. Bose-Einstein condensation due to cooperative tunneling would occur at temperatures well below 0.1 mK. If it does occur, the density of the superfluid component will be on the order of 10^{-6} of the bulk density. It seems extremely unlikely that the present generation of low-temperature laboratories are capable of observing this superfluidity.

²A. F. Andreev and I. M. Lifshitz, Zh. Eksp. Teor. Fiz. <u>56</u>, 2057 (1969) [JETP <u>29</u>, 1107 (1969)].

³Leggett, Ref.1.

⁴R. A. Guyer and L. I. Zane, Phys. Rev. <u>188</u>, 445 (1969).

⁵R. A. Guyer and L. I. Zane, Phys. Rev. Lett. <u>24</u>, 660 (1970).

⁶J. F. Fernandez and H. A. Gersch, Phys. Rev. <u>149</u>, 154 (1966).

⁷A. Andreev, K. Kishishev, L. Mezov-Deglin, and A. Shalnikov, Pis'ma Zh. Eksp. Teor. Fiz. <u>9</u>, 507 (1969) [JETP Lett. <u>9</u>, 306 (1969)]. This paper reports an attempt to see "vacancions."

⁸J. H. Hertherington, Phys. Rev. <u>176</u>, 231 (1968).

⁹R. A. Guyer, R. C. Richardson, and L. I. Zane (to be published). This is a review article on the excitations in quantum crystals and the determination of their properties from NMR and related data.

^{*}Work supported in part by the Alfred P. Sloan Foundation and by the National Science Foundation.

¹G. V. Chester, Phys. Rev. A $\underline{2}$, 256 (1970). Chester discusses the possibility of Bose-Einstein condensation in quantum crystals; he suggests that the crystalline order "would presumably prevent the appearance of any normal superfluid properties." The kind of mobility that permits a Bose-Einstein condensate to be present in the solid could also lead to superfluidity. See A. J. Leggett, Phys. Rev. Lett. $\underline{25}$, 1543 (1970). A general discussion of the relationship of Bose-Einstein condensation to superfluidity is found in D. Sherrington and W. Kohn, Rev. Mod. Phys. 42, 1 (1970).

¹⁰This probably need not be an assumption. It is difficult to conceive of a plausible argument for the groundstate vacancies moving differently than thermally activated vacancies.

¹¹D. S. Miyoshi, R. M. Cotts, A. S. Greenberg, and R. C. Richardson, Phys. Rev. A 2, 870 (1970).

¹²This limit is not extended to lower values of n_v because the Zeeman-tunneling relaxation process takes over from the Zeeman-vacancy wave process as the temperature is lowered and the vacancy waves are no longer seen. See Ref. 11.

¹³R. P. Giffard and J. Hatton, Phys. Rev. Lett. <u>18</u>, 1106 (1967); see also R. P. Giffard, thesis, Oxford University, 1968 (unpublished).

¹⁴The energetics of vacancy formation is well understood theoretically; Ref. 8. There are two conclusions that the theory permits: (1) There are no ground-state vacancies; (2) vacancy formation in solid ⁴He is more difficult than in solid ³He.

¹⁵In Ref. 4 it is shown that the essential volume dependence of the cooperative tunneling process is in the factor $\exp[-\frac{1}{2}\alpha^2(\Delta^2 + \sigma^2)]$, where σ is the hard-core radius and α^2 is related to the Debye temperature by $\hbar^2 \alpha^2 / m \approx k_B \Theta_D$; then, $\alpha_4^2 / \alpha_3^2 = (\frac{4}{3})^{1/2}$ [H. H. Sample and C. A. Swenson, Phys. Rev. <u>158</u>, 188 (1967)]. ¹⁶See Ref. 3, footnote 8.

Vortex Motion in the Presence of Thermodynamic Fluctuations*

P. M. Horn, W. E. Masker, † and R. D. Parks

Department of Physics and Astronomy, University of Rochester, Rochester, New York 14627 (Received 2 December 1970)

We have observed an exponential temperature dependence of the quantity $d\rho_f/dH$, where ρ_f is the flux-flow resistivity, in thin-film superconductors in the reduced temperature interval $0.7 \leq T/T_c \leq 1.0$. The results can be explained qualitatively if it is assumed that the dominant contribution to the flux-flow viscosity is power dissipation resulting from the presence of thermodynamic fluctuations.

The study of current-induced vortex motion in superconductors is of particular interest because it allows the examination of time-dependent effects and dissipative processes in the superconducting state. A comprehensive review of the subject has been given by Kim and Stephen.¹ In the presence of a transport-current density J of sufficient magnitude, steady-state vortex motion of velocity v obtains, where v is determined by equating the net force on a vortex, $f = f_L - f_p$ (f_L being the Lorentz force $J\varphi_0/c$ and f_p being the pinning force), to a viscous drag force ηv :

$$\eta v = J\varphi_0/c - f_p, \qquad (1)$$

where $\varphi_0 = hc/2e$ is the flux quantum. This leads to a finite resistivity which, in the limit $f_L \gg f_p$, is given (for the usual thin plate geometry, in which case $n\varphi_0 = H$, *n* being the vortex density and *H* the applied perpendicular field) by

$$\rho \to \rho_f = \varphi_0 H / \eta c^2. \tag{2}$$

Since the power dissipated through viscous flow is given by $D = \eta v^2$, Eq. (2) may be cast into the form

$$\rho_f = DH / J^2 \varphi_0. \tag{3}$$

The essential physics lies in the understanding of the source of dissipation D. In the usual situation the major contribution to D comes from

Joule heating in the vortex cores (actually half of D comes from dissipation in the core and half from dissipation arising from the return currents outside the vortex core).² The local model of Bardeen and Stephen,² which treats this problem, has been successful in explaining the empirical result, $\rho_f / \rho_n = H / H_{c2}(0)$ for $T \sim 0$, of Kim, Hempstead, and Strnad.³ While the experimental and theoretical situations are less satisfactory for finite temperatures, it is believed that the basic dissipative mechanism is the same as that for $T \sim 0$. We report here flux-flow results in a regime where the major contribution to the dissipation appears to arise not from the vortex cores, but from the interaction of the current fields of the moving vortices with thermodynamic fluctuations.

The experiments were performed on granular Al films, prepared by the method discussed by Masker, Marčelja, and Parks.⁴ Such films are particularly attractive for superconducting studies since the grain size (and hence the scale of structural disorder) is small compared with the coherence length $\xi(T)$.^{5,6} Thus, such films, from the standpoint of superconductivity, are particularly homogeneous. This is manifested in the present studies in the extremely small depinning-current densities observed (smaller than in highly annealed bulk specimens).⁷ In addition,