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a ring, and we have an ion-riQg complex where
the x'lng gx'ow'8 to macroscopic size. The 1on-

ring complex grows (and slows down) until the
total drag fol ce again balance8 eE. This 18 mhRt

Careri has texmed the "giant fall. " The binding
of the ion to the ring has been described earlier
by Donnelly and Roberts'; clearly if the field is
further increased the ions mill begin to escape
from the rings and the ion velocity will, on aver-
age, be seen to increase again. This has been
observed by Bruschi, Mazzoldi, and Santini. 'o

The entire shape of the (v;, E) curve, then, re-
flects the making of complexes by the moving
ion and the distinctive role played by fluctuations.
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3] if f= (2/x)~/2.
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A lattice model with short-range interactions is proved to condense and have a singu-
lar coexistence-curve diameter at the critical point.

%'idom and Rowlinson' have described a new
model fox' the liquid-vapor transition mith the un-
expected property that if the system does con-
dense and if it has a specific heat singularity,
c„-(T,-T), then the diameter of the coexis-
tence curve, p~(T) = —2[p~(T)+pa(T)], is also
singular at T, :

(&/dT)p&(T) (T. T)--- (&)

In deducing this singularity they exploit the fact
that theix' intex'acting gas is thex'modynamically
equ1VRlent to RQ ideR1 gRS of pRx'tlcles which cRn
homever, interact with each other indirectly via
their interactions with the particles of a second
ideal gas occupying the same volume. This
equivalent tmo-component system is completely
Symmetxic in the tmo components, and the de-
rivation of (1) relies on this symmetry.

In assessing the likelihood that (I) might
describe the diameter of a real system, one
encounters some worrisome points. For one
thing, although there is nothing in our current
understanding of phase transitions to cast ser-
ious doubt on the assumptions that the model
system does condense and does possess a speci-
fic-heat singularity, they remain unproved as-
sumptions, and, as %'idol and Bomlinson ac-
knowledge, the conclusion (I) must therefore
"xemain tentative. "

Perhaps a more serious cause for concern,
howevex, is the symmetxy of the two-component
model. The representation of a real one-com-
ponent interacting system Rs Rn ideal gas with
an effective interaction mediated by the parti-
cles of R second ideal gas is not unfamiliar. For
example, R gas of mutually noninteracting pho-
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tons can, for many purposes, be represented as
a gas of electrons alone, with classical electro-
magnetic interactions. As the example suggests,
however, the two components in such a repre-
sentation are unlikely to be interchangeable.
One would be more inclined to take (1) seriously
if its derivation could be divorced from the sym-
metry of an underlying two-component model.

The solvable model of Hemmer and Stell, '
with long-range interactions leading to thermo-
dynamics of the "classical" type, sheds some
light on these questions since it can rigorously
be shown to possess a singular diameter, while
being apparently unrelated to any two-compon-
ent model. In the present note some further
evidence is described, in the form of a model
with short-range interactions and "nonclassical"
thermodynamics, more closely related to that
of Widom and Rowlinson than that of Hemmer
and Stell. This model can be proved rigorously
to condense, with a diameter that is logarithmi-
cally singular at the critical point,

dpi'(T)/dT- ~ln(T, -T)~,

and is equivalent to an intrinsically asymmetric
two -component model.

The model consists of a square lattice in which
objects do not, as in the familiar lattice gas,
occupy the primitive squares, but rather the
line segments bounding the primitive squares.
For concreteness, we imagine the objects to be
bars of length slightly less than a primitive
square side, one of which may or may not be
present on each of the lines separating neighbor-
ing primitive squares. A state S of this gas of
bars is determined when one specifies which
lines have bars on them, and which do not. Thus
there are 2~ states, where N is the number
of sites at which a bar may be placed. In the
thermodynamic limit, N/N -2, where N is the
number of primitive squares in the lattice.

The energy of a state S is taken to be

U(S) = -JN, (S),

where N, (S) is the number of primitive squares
all four of whose adjacent bar sites are occupied
in the state S (or, equivalently, the number of
little squares of primitive size formed by the
bars in the state S). This interaction can be
represented as a sum of four-body interactions.
The thermodynamics of the model is determined
by the grand partition function

where N(S) is the number of bars present in the
state S, and K= J/k, T.

This system can also be represented as a two-
component model. One component consists of
bars on a square lattice with properties identical
to those we have just described, except that the
bars are taken to be noninteracting in the two-
component model. The second component con-
sists of lattice-gas molecules, one of which
may or may not be present in the interior of
each primitive square. The molecules are also
mutually noninteracting. However, there is a
bar-molecule interaction which expresses itself
in a constraint on the allowed configurations of
the two-component system: Only those config-
urations are allowed in which the two squares
separated by each unoccupied bar site are both
occupied by molecules. '

The grand partition function of the two-compon-
ent model is

(5)

where the sum is over all states 8 of the bars
and 8 of the molecules compatible with the con-
straint, and where N(S) is the number of mole-
cules present in the molecular state S.

The equivalence of the models is established
by performing the sum over S in (5) for each
fixed state S of the bars. Given a particular con-
figuration of bars, the constraint requires a
molecule to occupy every square except those
with bars on all four sides. Such squares may
or may not be occupied. Thus,

~mix(z z) —Q zN(s)zN Ns(s)(1+z)Ns(s) (5)

Comparing (5) and (5), we find

'"(z, Z) = Z"=[z, ln(1+ 1/Z)].

However one can sum (5) in the opposite order.
Given a particular molecular configuration S,
the constraint requires a bar to occupy every
line segment, unless the two adjacent squares
both contain molecules, in which case a bar may
or may not be present. Thus if N„„(S) is the num-
ber of nearest-neighbor pairs belonging to the
set of squares occupied in the state S, then

mix(z z) —g zN(s)zN-Nnn(s)(1 y z) Nnn s (8)

Now (8) can be expressed in terms of the grand
partition function for an ordinary lattice gas on
a square lattice with attractive nearest-neighbor
interactions:

~( R) Q Z N(S) KNs(S) (4) „(-g) = 5 ZN(S) NNnn(S)
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whence

P H Y S I C A I. R K V I K %' I.E Y T E R S

(15) and (16) imply

'"(z z) =z ={X ln(1+1/z)) (10)

By comparing (10) and (7) we can express the
grand partition function of the original model in
terms of that of the lattice gas:

=(z,K) = (e'-1)"z""-(Z,K),

where

~p(K) = (1+z) -'~g(K), (20)

(»)
(22)

(23)

b,av(K)= (1-e E) 'bp{K),

p, (K) = 1--,'(1+z) '[ts~(K)+ M s{K)],

a[», (K)+~&(K)]=(1-e ') '[l-p~(K)l.

Equations (18) and (19) permit (20) and (23) to be
written

z= [e'-1) ', K=ln(1+1/z).

Now the equilibrium density and energy per
bar in the bar model are given by

(12)
~p(K) = (1+z) -'ap(K),

wi (K) + wo(K') = (1-e z) '.
(24)

(25)

p(z, K) =——ln-(z, K)
8 Now in the two-phase region so is a linear func-

tion of density and must therefore have the form

u(z, K) = -Z(N/N)~(», K),

I 8
m(z K)==—ln=(z K).

NBA

(14)

ts(p, K) = [p-p„(K)]
4p K

+ 2[m~(K)+ws{K)].

Equations (21), (24), and (25) simplify this to

(26)

Therefore (11) tells us that

p(z, K) =1-(1+z) 'sv(z, X')

~(z,K) =(1-e-") '[l-p(z, X)], (16)

where p ls the equilibrium density of the lattice
gas and u = -J(N/N)te is the equilibrium energy
per molecule.

The lattice gas is known to condense at a crit-
ical temperature given by sinh(-,'K,) = 1. Below
the critical temperature, particle-hole sym-
metry requires that in the two-phase region

Z=Z(K) = e-'

and, in addition,

-'[r.(K)+p.(K)]=r.(K) = —.',

~r(K) =r.(K) r.(K)-
=R~(K)-ws(K) =&%(K).

From (17) and (12) it follows (i) that K is an
analytic function of K and vice versa, at all tem-
peratures in the two-phase region including the
critical point; (ii) that z is an analytic function
of K in the two-phase I egion including the crit-
ical point; and (iii) that when Z exceeds z(K)
then z is less than z(K), so that below the crit-
ical temperature the homogeneous gaseous states
in one model correspond to the homogeneous
liquid states in the other. In particular, then,

m(p, K)=(1-e «) '

([1"(K)][p-p.(K)1.—.'] (»)
and therefore, since c„ is proportional to -(Bm/
BK)~, dp, /dT will have the same critical singu-
larity as c„.

To establlS that this singularity ls ln fact
logarithmic, note that particle-hole symmetry
in the two-phase region requires that

+(p., K) = a[7~&(K)+@o(K)l

for the lattice gas, and therefore, from (22),

p, (K) =1-[1+z(K)] 'u(p„K).
Since -(s~/BK) is known to have a logarithmic
singularity at K„and since dK/dK is analytic
at the critical point, dp~/dK must also have a
logarithmic singularity at the critical point.
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The interaction is more easily pictured, and the re-
lation to the two-component model of Widom and How-
linson more readily grasped, by stating the interaction
as a hard-core repulsion between antibars and anti-
molecules: If an antibar occupies any line segment,

no antimolecule can be present in the square on either
side. 7'he antibar-antimolecule model is of some inter-
est in itself, and has been studied by B. Widom, J.
Chem. Phys. 46, 3324 (1967), who also exploited its
equivalence to the lattice gas.
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The real part of the shear mechanical impedance has been measured for three smectic
liquid crystals using a shear-wave reQection technique. Results at 80 and 450 MHz are
considerably lower than those expected for an isotropic, Newtonian Quid, suggesting the
existence of viscoelastic relaxation.

A study has been made of the behavior in shear
of three smectic liquid crystals, ethyl p-azoxy-
benzoate, heptyloxyazoxybenzene, and ethyl P-
[(P-methoxybenzylidene) amino] cinnamate. The
shear-wave properties of a liquid may be repre-
sented by the shear mechanical impedance, Z&
=RI. +iX~, defined as the negative ratio of shear
stress to the rate of change of shear displace-
ment. For a Newtonian fluid, i.e. , one exhibiting
no viscoelastic relaxation, R~ =X~ = (mpr)f)' ',
where p is the density, p the steady-flow viscosi-
ty, and f the shear-wave frequency. For a visco-
elastic fluid RL, and XI. diverge with increasing
frequency. In the limit where the material be-
haves as an elastic solid, Rl. attains a maximum
value and X~ becomes zero.

The experimental technique involved determina-
tion of the reflection coefficient for shear waves
at a solid-liquid interface. ' Measurements were
made at two frequencies, 30 and 450 MHz. At 30
MHz a pulse of shear waves was obtained by
means of a thin &C-cut transducer bonded to one
end of a fused quartz rod; at 450 MHz a rod of
~t-"-cut crystal quartz was used and shear waves
were generated directly by surface excitation.
The free end of the rod was loaded by the sample,
and the change in the reflection coefficient gave
the real part R~ of the shear impedance. No par-
ticular efforts were made to achieve uniform ori-
entation of the samples and the orientation in situ
was not observable.

The liquid crystal samples were obtained from

Eastman Kodak Co. , and were used as supplied.
The results obtained did not differ significantly
from those obtained using recrystallized materi-
al.

Ethyl P-azoxybenzoate has a single mesomor-
phic phase, smectic A, from 114 to 123'C. The
viscosity has been reported by Vorlander' to be
up to 9 cP for the isotropic liquid and from 30 to
160 P in the smeetic phase. The variation of the
shear resistance at 450 MHz is shown in Fig. 1.
Although there is a large increase in steady-flow
viscosity upon cooling through the isotropic liq-
uid-to-smectic phase transition at 123'C, there
is no appreciable change in R~. At the freezing
point (somewhat below the nominal transition tem-
perature of 114'C) the shear reflection loss in-
creases rapidly because of shear-wave transmis-
sion into the solid. The value of R~ below the
freezing point indicates an elastic modulus ap-
proaching 10"dyn/cm', a value typically ob-
tained for simple organic glasses. ' Upon heating,
Rl, changes less abruptly, and a difference be-
tween the values for heating and cooling persists
until the isotropic liquid state is reached. During
the heating part of the cycle, pretransitional soft-
ening of the solid is evident. A Newtonian liquid
of viscosity 100 P and unit density has a shear re-
sistance of 0.96 x10'" dyn sec/cms at 30 MHz and
3.7 && 10' dyn sec/cms at 450 MHz. At 115'C the
measured values of Rl, were 3.6 ~10' and 1.3

&& 10 dyn sec/cm' at 30 and 450 MHz, respective-
ly. Within the limits of experimental error,


