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We examine aH of the black-hole geometries which can be analytically developed in
terms of a parameter from the Schwarzschild geometry. It is shown that this analytic
famQy is completely spanned by the Kerr-Newman space-times with g2+g2 & m2, where
e, ~, and m denote charge, speciTic angular momentum, and mass. If general (nonspher-
ical) gravitational collapse produces black holes and if analytic variaticn of the initial
conditions of gravitational collapse causes analytic variation of the final space-time geo-
rnetry of the black holes produced by the collapse, this result implies that the generic
final state of gravitational collapse is a Kerr-Newman black hole, fully specified by its
m.ass, angular DloxQentQD1, and chal ge s

The only known solutions of the Einstein field equations which describe black holes are the Kerx'-
Newman solutions, ' ' whose space-time metric and electromagnetic field tensor may be written, xe-
spectively, as follows (in geometrical units c = G =1):

~ Q

ds' =-, 2, (d&-a sin'8dy)'+. . . [adt-(r'+aa)dq]~
K +Q cos 19 f +Q cos 0

F = —», ,— (r'-a' cos'8)dr A(dt-a sin'8dp)- . .m c2 ;d8A[adt-(r'—+a')dy].r'+a'cos'8 ' r2+ a2 cos28

The Kerr-Newman black holes depend on only
three parameters, m, a, and e, representi. ng,
respectively, mass, angular momentum per unit
mass y and charge

This Lettex reports a new result which indi-
cates that the generic final state of gravitational
collapse is a Kerr-Newman black hole.

It is mell established that stars with mass
greater than a certain critical mass (approxi-
mately 0118 solR1' 111Rss) cRI111ot coIQplete 'tllelx'

thermonuclear evolution without undergoing gxav-
itational collapse. For a star of perfect spheri-
cal symmetxy, complete collapse must xesult in
a Schwarzschild black hole (or in a Reissner-
Nordstrom black hole if the star has a net charge)
A full treatment of the dynamics of nonspherical
collapse remains a task for the future, but it
is natural to believe that the intense gravi. tational
fields occurring as the nonspherically symmetric
star collapses mill result, as in the spherically
symmetric case, in self-closure of the star (i.e. ,
the enclosing of the star within an event horizon)
while the stax' is still of finite size and has finite
density. If this is the case, then it is natuxal to
expect the region exterior to the horizon in a gen-
eral collapse situation to retain the following
three propex'ti. es that it has in spherically sym-

metric collapse:
(1) This region should be vacuum except possi-

My foi' electromagnetic fields (this will be cRlled
an EV region) since all but a negligible fraction
of the matter initiaQy present should faD thxough
the horizon or be ejected to large distances.

(2) The horizon and exterior region should be
nonsingular. This is because the asymmetries
should not have such a drastic effect before self-
closure occurs (while the star is still of finite
density) that they create singularities; but after
self-closure occurs, the star is completely cut
off from the exterior region and therefore no
drastic changes should occur in this region aftex'
self-closure occurs either.

(3) The space-time metric should "settle down"
and approach a final-state metric which is pseu-
dostationary (i.e., has a Killing vector which is
timelike at spatial infinity) because only a finite
amount of gravitational radiation can be emitted
in the collapse process.

Furthermore, it is natural to believe that if the
initial conditions of gravitational collapse are
smoothly (i.e. , analytically) varied, then the
space-time geometry of the exterior regions of
the black holes produced by the collapse will also
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vary smoothly since infinitesimal changes in the
initial conditions should not result i.n drastic
changes in the final exterior region. (However,
it should be pointed out that this assumption is
not entirely trivial; as the initial conditions are
smoothly varied, some instability might suddenly
occur i.n the collapse process, resulting in non-
smooth variation of the final states. In fact, the
example of Newtonian ellipsoidal equilibrium
configurations of homogeneous, ideal fluids'
—many of which cannot be obtained by analytically
deforming the spherically symmetric configura-
tion through other equilibrium configurations
—illustrates the possibility that this could hap-
pen. )

Now, imagine varying the initial conditions of
gravitational collapse (e.g. , initial density, rota-
tion, etc. ) smoothly with a parameter a, with a
= 0 corresponding to perfect spherical symmetry
and no net charge; and consider, for each o. , the
final-state metric g(a) and final electromagnetic
field tensor E(a) resulting from the collapse. If
the above stated natural assumptions concerning
collapse are correct, g(a) and +(a) will satisfy
the following five properties:

(I) Each pair g(a), +(a) is a solution of the Ein-
stein-Maxwell equations [i.e. , g(a) satisfies Ein-
stein's equations with energy-momentum tensor
due to E(a); E(a) satisfies Maxwell's equations
in tbe geometry g(a)j. g(0) is the Schwarzschild
metric and +(0)=0.

(II) Each g(a) is asymptotically flat and pseudo-
stationary. This requires that for each o.' there
exist "Schwarzschild-like coordinates" t, x, 0,
and y having the following properties: (a) &/&f

is a Ki.lling vector which is timelike at spatial in-
finity; and (b) the metric is asymptotically Min-
kowskian and the field-tensor components are
0(l/r') as r- ~ in the coordinates t, x, y, and
2', where x=r sinecosp, p=xsinesinp, and z
=x cosI9.

(III) The extel'101' 1'eglo11 (i.e. tbe domain of
outer communications) and horizon of eachg(a)
is nonsingular. (The domain of outer communica-
tions is defined as the set of points lying on time-
like curves which escape to spatial infinity in
both the future and past directions; the horizon
is defined as its boundary. ) This requires the
existence of "analytic coordinates" (i.e. , "gener-
alized Kruskal coordinates" ) which analytically
cover the exterior region and horizon of g(a).
(The Schwarzschild-like coordinates need not
analytically cover this entire region, e.g. , they
may break down at the horizon. )

(IV) The metric and field tensor components in
the analytic coordinate system vary analytically
with A.

(V) The transformation from the Schwarzschild-
like coordinates to the analytic coordinates var-
ies analytically with o..

The analytic family of EV black-hole metrics
containing the Schwarzschild metrics is defined
as the set of all space-times belonging to some
one-parameter family g(a) which satisfies (I)-(V).
Since the initial conditions of general gravitation-
al collapse can be obtained by analytic (in a) vari-
ation of the initial conditions of spherical col-
lapse, this analytic family must coincide with the
possible final state of collapse if the above stated
natural beliefs concerning collapse are correct.

eorems proven by Israele, io show that the
Reissner-Nordstrom metrics are the only static
(as opposed to merely pseudostationary) black
holes which have closed, simply connected sur-
faces of constant gpp. Carter" has shown that the
class of axially symmetric "simple black-hole
exterior solutions" with no electromagnetic fields
consists of a discrete set of one-parameter or
two-parameter "continuous families" [i.e. , fami-
lies such that any two elements can be connected
by a piecewise analytic (as opposed to analytic)
curve g(a) consisting of only elements of tbe fam-
ilyj. Thus, Israel's theorems indicate that the
Reissner-Nordstrom solutions with lel &m are
the only static members of the analytic family de-
fined above, while Carter's theorem shows that
the Kerr space-times with lal &I comprise the
only axially symmetric subfamily of this analytic
family which have no electromagnetic fields and
contain the Schwarzschild metrics. The new the-
orem is the following:

Theorem. -The analytic family of EV black-
hole metrics containing the Schwarzschild met-
rics is completely spanned by the Kerr-Newman
space-times with e'+ a' &ng', i.e. , any one-pa-
rameter family g(a), &(a) satisfying conditions
(I)-(V) is composed only of Kerr-Newman solu-
tions, Eqs. (1) and (2).

That the Kerr-Newman space-times with e'+a~
&m' belong to this analytic family (but not those
with e +a =no where the topology of the horizon
changes or those with e'+a &m' where there is
no horizon at all) is easily verified from the well-
known properties of these metrics. The nontriv-
ial part of the proof consists of showing that
there are no other members, i.e. , that any one
pRI'RxIIetex' family g(a) SR'tlsfylllg (I)-(V) is coIQ-
posed only of Kerr-Newman metrics. The basic
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idea of the proof is as follows (for simplicity,
only the pure vacuum case, i.e., no electx'omag-
netic fields, is discussed).

We examine all of the derivatives g'"'=d"g/
de" I =, of g(a) with respect to n at o. = 0 and
translate the conditions (I)-(V) into conditions on
the g~"~. We find that g~'~ must be a time-inde-
pendent solution of the linearized Einstein equa-
tions in the Schmarzschlld backgx'ound that its
components in the coordinate system t, x, y, and
s must be O(l/r) as r- ~, and that its compo-
nents in the Kruskal coordinates of the back-
ground Schwarzschild metric must be finite at
the horizon up to a gauge transformation (i.e. ,
there must exist a gauge transformation f" such
that the Kruskal components g„„' +f„.„+f„.„are
finite at the horizon). Vishveshwara's" analysis
of stationary perturbations of the SchwarzschiM
metric effectively shows that to first ordex in 0. ,
g(l1) must coincide with a family composed only
of Kerr metrics. The generalization of this state-
ment to all oxders is made possible by the follow-
ing crucial fact: The nth-order equations and
conditions involve nth-order quantities in pre-
cisely the same manner as the first-order equa-
tions involve first-order quantities. Hence, if
g(n) andg'(n) agree in all orders j ~ n-l, we find
that g~"~-g' "~ must satisfy the same equations
and conditions as g~'~, so that, given all g~'~ with
j ~ n I, g'-"' is determined up to the same (highly
restricted) arbitrariness as exists for g ' .
Thus, we inductively obtain a uniqueness theorem
for the g("), from which it follows that g(&) is
composed of only Kerr metrics.

Thus, the above theorem plus the assumptions
that {1)gravitational collapse produces black
holes and (2) analytic variation of the initial con-
ditions of gravitational collapse causes analytic
variation of the black-hole space-time geometry
resulting from the collapse, lead one to conclude
that the generic final state of gravitational col-
lapse is a Kerr-Newman black hole with e'+a'
&m'. That only final states with e'+u'&m exist
is not very surprising since from Newtonian con-
siderations it would be expected that, if a body
has e'+a'&ng', the electxostatic and centrifugal
repulsive forces (-e'/r+ ma'/r') would dominate
over the gravitational attraction (-m'/r') before
a horizon could be formed at x-m, so it is quite
reasonable that a body with 8'+a2&m2 cannot col-
lapse. (On the other hand, small charge and ro-
tation cannot prevent collapse. ') Much more sur-

prising is the conclusion that the final state of a
collapsed object is completely determined by its
mass, angular momentum, and charge, but re-
cent work of de la Cruz, Chase, and Israel, '~

Price, "and Cohen and Kaid" substantiates this
conclusion for small deviations from spherical
symmetx'y,

One of the most significant astrophysical con-
sequences of the above conclusion is that a, col-
lapsed object cannot have an electromagnetic
field unless it is charged [in which case its field
must still be of the very special Kerr-Newman
form, Eg. {2)]. The net charge of an uncollapsed
object must be very smaD, for if it were not, ex-
cess protons or electrons would fly off from the
star under the influence of electrostatic repul-
sion. Moreover, no mechanism is known by
which charge separation could occur during col-
lapse. Consequently, it appears that collapsed
objects cannot play a direct x'ole in phenomena
requiring a magnetic field, such as synchx'otron
x'adiatlon~

Details of the proof of the theorem discussed
above will be submitted for publication elsewhex'e.
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