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Me Coulomb-fission cross sections fox' ~~2' and Nd incident on U are calcu1ated
in a dynamical classical model. In particular the influence of nuclear forces on the
cross sections is studied. Since the+ ax'e counteracting the Coulomb fox'ce, Qley dHQi-
nish the cross sections for Coulomb fission significantly and shift the Coulomb barrier
to'tvvards 1owex' encl gie8.

The time dependence of Coulomb distox'tions in heavy-ion reactions has been investigated in various
articles. ' ' In these works the Coulomb barriex' has been studied especially carefully. In coxnparison
to 1t little 18 known Rbout Coulomb fls8lon. IQ fRct the d18cx'epanc1es 1Q the theoretical predlctloQ8 of
the Coulomb-fission cross sections are large as can be seen fx'om the work of Valets, Guth, and
Tenn, e 3nd of others. ~'~ In none of these investigations have nucleax' forces been considex ed, though
their influence has been realized by the applicati. on of the dynamical model on the Coulomb barrier.
The short-range nuclear force counteracts the Coulomb force; and, as is seen 1n Ref. 2, 1t dim&nishes
the excitation energy of the quadrupole vibrations considerably. One therefore expects that the ener-
gy in the fission degree of freedom, and with it the Coulomb-fission cross section, wiD be lowered
when nucleax' forces are included in the calculations.

To deal with this effect quantitatively w'e use the dynamical classical model. As shown by Riesen-
feldt and Thomas, ' the expectation value of the quadrupole vibrtions agrees very well with the classi-
cally calculated value of the vibrational amplitude as a function of time. Vfe therefore believe that
the classical model is not as inadequate 38 is claimed by Beyex', Winther, and Smilansky. Their
very small ezcitRtion cx'oss sections may bedue to the speclflc Rssuxnptions on which thteir quantum
mechanical calculati. on is based. They do Qot considex" a, vibrations and either neglect x otations or
do not tleRt them consistently. It is vreH. known, however, that the Coulomb excit3tion of rotations js
much larger th3Q th3t of viblRt1ons. Furthermore both degx'ees of freedom Rx'e coupled by the rot3„-
tion-vibration interaction. We assume that the projectile (1) is spherical, whereas the target nucleus
(2) 1s defol'Ined. T118II tile totRl Hamlltonlan fol' ceIltx"Rl colllslons ls

Bj.nce the coupliQg between octupoles RQd quRdx'upoles is expected to be small, we restrict ourselves
to quadrupole vibrations. Giant resonances are neglected (see Beringer, ' Holm et al. ,9 and EIsenberg
and Greiner"). We start with the usual expansion of the nuclear surface in spherical harmonics jn the
laboratory system,

&(8, y) =Bo[1+F~qn, q F,q*(g, y)],

»«»«late &c1«up ««rms of se«nd»de»n the»»atio»»mp»«des using a constant charge
densIty pI,(r) = +/V, where V 1s tile nuclear voluIne. The llucleRr radius js gjven by g
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y, = 1.2 fm. For the deformed nucleus the e,„are transformed into the intrinsic system:

a!J Zp ptl (+0 P1 Y)+2/ F a2 a ot al a 1

(4)

where po and p, are the canonical conjugate momenta to the amplitudes a, and a, . The moments of
inertia

Z„=B[2a,' + 2(6)'~'a, ao+ 3ao'j, J', = 8Ba,'

where the I)„„'are the rotational matrices and n, P, and y the Euler angles. The simplest possible
potential for the quadrupole vibrations is the harmonic-oscillator potential. The necessary constants
for the projectile are taken from the excitation energy of and the transition probability to the first 2+

state. For the deformed target nucleus we first use the rotation-vibration model (for details see Refs,
9 and 10). Then H„«»+H„b&» is given by
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FIG. 1. Comparison between the potential of the Qo

vibrations in the rotation-vibration model (dash-dotted

curve); the cubic potential used by Wilets, Guth, and

Tenn (Bef. 6) (dashed curve); and the cut aq ——0 of the
potential-energy surface of V. E& describes the

height of the fission barrier, Co the stiffness of the ~0

vibrations, and Po the equilibrium deformation. P« is
explained in the text.

contain a coupling between the a, and ao vibra-
tions and, if inserted into Eq. (4), lead to the
rotation-vibration interaction.

For comparison with the work of filets, Guth,
and Tenn, ' we first solve the classical Hamilton
equations with vanishing H~„»„, ;„,. The a, v-
bration describes the fission mode with a fission
barrier E~= 5.7 MeV for '"U. The equilibrium

deformation p, for '"U is 0.28. If ao(t) reaches
values larger than P„=Po+ (2E,/Co)' ' (see Fig.
1) during the colbsion process for projectile
energies below the Coulomb barrier, we assume
that Coulomb fission takes place. It is well
known that "soft" vibrations can be excited more
easily than "hard" ones. Therefore this simple
assumption underestimates the Coulomb-fission
cross sections. The barrier and fission cross
sections are naturally functions of the initial
orientation of the target. The center-of mass

cross section is

(do'cI/dQ)»oo (r /o4) P~ (6)

where (r,/4)' is the Rutherford cross section and
I' is the fraction of orientations leading to fis-
sion. Analogously, the Coulomb barrier deter-
mines the reaction cross section

(des/d Q)„,.= (r,/4)'P,

where P is the fraction of orientations leading
to an overlap of the surfaces of the projectile and
a target nucleus.

The results for '"Xe and '"Nd on '"U are
shown in the upper part of Figs. 2 and 3. It is
obvious that for backward scattering, where
Coulomb excitation reaches its maximum value,
we can restrict ourselves to the Euler angle P
describing the angle between the nuclear deforma-
tion axis and the connection of the two centers of
mass. Most favorable for Coulomb fission are
initial p angles of about P=20'. With increasing
energy the cone of favorable P angles quickly
expands to both sides. Perpendicular orienta-
tion of the target, P =m/2, is the most unfavor-
able case. Then most of the excitation energy is
pumped into the a, mode which in the simple
rotation-vibration model is not coupled to the
fission mode as the rotations are not excited.
The line (do ~/dQ)»o. ends when it cuts the line
(dos/dQ)»o. . The Coulomb barrier begins at 0
and ends with 90'. Then all orientations lead to
an overlap of the nuclear surfaces of projectile
and target and (do~/d Q)»o. = (r,/4)' For ener-.
gies sbghtly above the beginning of the Coulomb
barrier it may be possible to distinguish Cou-
lomb fission from other reaction mechanisms by
the fission products. If we co&pare these re-
sults with those of %ilets, Guth, and Tenn', we
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FIG. 2. Differential cross section in the center-of-
mass system for Coulomb fission. 2Xe is incident on
238U. (r, /4)2 is the Rutherford cross section for back-
ward scattering (dos. /dQ)&86. describes essentially the
Coulomb bax riex'. It is given approximately by the
Huthex ford cross section multiplied by the probability
that the nuclear surfaces of the projectile and a target
nucleus come into contact. The upper curves are cal-
culated without a nuclear force. The influence of the
Yukawa force (strength constant Vo

——-295 MeV fm) is
shown in the lower curves. The fission cross section
ls considerably x'educed, and the Coulomb barrlex' ls
Shifted tOWardS lo%'er energieS.

first should say that the parameter d p in their
potential

E( ) 3E a, (t)-P, '"1 2 a,(t)-P„
dP 3 ~P

is not as much undetermined as claimed by the
authors. Its value is fixed by the cubic form of
the Ansatz. Co is defined as

C, = [d'E (a,)dc,'], (9)

With C, =E, '/P, 'E„,we obtain

6E, '/'
~P= -'- = ' (6E,E„,)'/'=0. 35, (10)

0 eb

where E, is the energy of the one-phonon state
of the a, vibrations and E„,is the first rotational
level. For b, p =0.35 our results and theirs are
of the same order of magnitude.

In the simple rotation-vibration model the fis-
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PIG. 3. Coulomb-fission cx'oss section for Nd in-
cident on U. The lower part shows the influence of
the Yukawa force (strength constant V~ = -294 MeV fm).
The cross sections are calculated within the rotation-
vibration model (solid lines) and with the complete po-
tential energy surface of ~SU (dashed lines). See cap-
tion to Fig. 2.

It has to reproduce correctly the minimum at
p, =0.28, the stiffness parameters C, and C,
(curvatures at the minimum in ac and a, direc-
tion), and the barrier height E„=5.7 MeV. This
can be achieved by using the foQowing coeffi-

sion cross section never reaches the curve (r, /
4)' which is especially visible in Fig. 3. Besides,
the potential in Eq. (4) does not fulfill the sym-
metry condition r(n„a,) = (aa,--,'(8)'/'s„-,'g, + s'

x (2)'"a,) and is therefore restricted to the reg-
ion -(—,')'~'a, «a, «(-,')'~'a„a, ~ 0, which is not
serious since the fission barrier is reached
earlier than the l.imitations (see Fig. 1). This
can also be avoided by using a complete poten-
tial-energy surface V(a„a,) for 'MU. The rota-
tional invariance of both potentials is discussed
in Ref. 10. The g, = 0 cut, i.e., the potential
V(uc, 0), is the solid line in Fig. 1. The dashed
line is the potential of the go vibrations used by
Wilets, Guth, and Tenn', while the dash-dotted
line represents the rotation-vibration xQodel.
The potential-energy surface is given by
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cients:

Co& 175.8472, Czp = -85.724 17,

Cp2 2155.516, Crx = 3 193.989,

Co3 5710 004~ C2o 1189 203~

C~2 12 290 29 Cp4 274 6812

C2i = 7334.116.

All higher coefficients are zero. The C „are
given in MeV. If the total excitation energy is

larger than the maximum of

3 L 2

U, &&(a,) = V(ao, a, = 0) + Q
2J~&ao a

Coulomb fission takes place. For '"Nd incident
on '"U the dashed curve in Fig. 3 shows the re-
sult. As expected the Coulomb-fission cross
section is raised. The Coulomb barrier is
changed very little because near the turning
point of the Rutherford hyperbola the excitation
energies are small.

Let us now consider the influence of +YUI amint
in Eq. (1), which is given by

7T Jp Jp (r, -r2-R (13)

with p(r) =A/V and p = 0.8 fm. The strength con-
stant Vp is evaluated with the same method as
described in Ref. 2. The integral (13) is only
evaluated up to terms of first order in the de-
formation parameters. In the calculation of the
fission cross section we again use Eq. (8). This
is an approximation, because the Rutherford
cross section is also changed by the nuclear
forces. The results are shown in the lower part
of Figs. 2 and 3. At the starting point of (doc&/

dQ)„,.the influence of nuclear forces is small
because the projectile nearly keeps out of their
range. At higher energies, however, the Yukawa
force counteracts the Coulomb force more and

more. Therefore the fission cross section no

longer increases with increasing energy in this
region. Thus near the barrier the Coulomb-fis-
sion cross sections are much smaller than those
calculated without a nuclear force. Also (dc~/
dQ)„,.changes its shape somewhat and is shifted
towards lower energies.

Both effects, the deformation of the target and

the Yukawa force, are usually simulated by cal-
culating the Coulomb barrier for rigid spheres
using a larger radius constant. But they are not

sufficient to explain completely the experimental
values of rp=1.4-1.45 fm. In fact, the experi-
mental values for ro can be reproduced by using
yp=1. 35 fm in our model. Then in the '"Xe-'"U
case the cross sections are shifted about 50 MeV
towards lower energies. If higher-multipole
vibrational modes are included into the calcula-
tions, this discrepancy probably disappears.
Near the barrier it is possible that the nuclear
forces counteract the Coulomb force so strongly

that the excitation energy of the vibrations is
higher than the fission barrier after the collision
process (Yukawa fission). For 4'Ar and "Kr
there is no Coulomb fission.
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