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time approximation.
Finally we note that the characteristic length in Eq. (11) is of the order of the phonon mean free

path. It is within this distance that the electron heat current rises from its surface to bulk value. This
is independent of the o."s and is much shorter than the electron mean free path. %e expect this conclu-
sion to be approximately valid in three dimensions as well, so that the large texnperatuxe gradients
are within R distance of order /~ from the surface. Fux ther on the temperature gradient is approxi-
mately constant and therefore one essentially observes bulk behavior for distances greater than /~.

This is perhaps an explanation of why measurements of V T in metals have failed to show any mean-
free-path effects since the relevant distance l~ is much shorter than E,.
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Pseudopotential Calculation of the Latent Heats of Melting of Simple Metals

%. M. Hartmann
Michigan State University, East Lansing, Mckggam 48828

(Received 1S April 1971)

The latent heats of melting for simple metals at normal pressure are calculated by the
pseudopotential method. The Percus-Yevick hard-sphere model is used for the liquid-
structure factor, and an uncorrelated harmonic oscillator xnodel is used for the solid-
structure factor. Numerical results agree well enough with experiment and are suffi-
ciently stable against changes in the parameters to make further calculations of the la-
tent heat seem worthwhile.

In this Letter we propose that the latent heat
of melting may be calculated for simple metals
by the pseudopotential method. Along the melt-
1ng cux've the Glbbs functions fo1 llguld and solid
phases must be equal. Therefore, the latent
heat of melting I. is

treatment of this interaction by the pseudopoten-
tial method makes the calculation tractable. Be-
cause of macroscopic charge neutrality the ho-
mogeneous parts of the bare electron-ion interac-
tion, electron-electron direct interaction, and
interionic direct interaction sum to a finite re-
sult, the Hartree energy:

where 6 denotes the difference between liquid
and solid quantities. At atmospheric pressure
pb, V is entirely negligible, and the latent heat is
given by the difference in internal energies AU.

The internal energy of a simple metal, in ryd-
bergs per ion, includes the kinetic, exchange,
and correlation energies of the electron gas':

Ug ——2.21Z/r, -0.916Z/r; (0.115-0.081 lnr, )Z,

where r, is the Wigner-Seitz radius in atomic
units and we have used the Nozieres-Pines inter-
polation formula for the correlation energy. '

The energies of the conduction electrons are
changed by interaction with the ions, and the

U H
= lim [m, (q) + 8~Z/q'] ZQ, ',

where 0, is the volume per ion and w, (q) is the
bare ion pseudopotential. The contribution to the
latent heat from the above terms depends only
upon the volume change on melting and is inde-
pendent of structure. Since the kinetic energies
of the ion cores at melting are UE = ~k&T for
both liquid and solid, only two important contri-
butions to the system energy xemain.

The difference between the direct ion interac-
tion Vo(q) =8vZ'/q' for the structure of the sys-
tem and that of the homogeneous jellium is, for
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x =i. (liquid) or 8 (solid),

U "=-.(2 ) 'f~ (q)[ "(q)-1]d'q,

where a'(q) is the appropriate structure factor

(N 'Q exp[i@.(R,-R, ~)]).
For a small local pseudopotential the nonhomoge-
neous contribution to the electron energy bands
is given by second-order perturbation theory and
is called the band-structure energy:

~~s"= 2(2&) 'f~ Bs(q)a"(q)d'q,

where

Bs(q) = C(q) VD(q).

The Cochran function C(q) is defined in terms of
the electron-gas dielectric function' e(q):

C(q) =w, '(q)[1-z '(q)][lima, '(q)] '.
The difference between the structural factors

in. the integrands for UD and U» results from the
fact that whereas an ion interacts only with other
ions an electron is scattered by all the ions of
the system. For liquid or solid we may calcu-
late either the total energy U" or

V"-U~ = U,"+U„"+U~" + U„".
For numerical calculations we use the sim-

plest reasonable models. The bare ion pseudo-
potential is of the Ashcroft form4

w~(q) = (8mZ/q') cos(qr, )

with a single parameter r,. %e correct the di-
electric function for exchange and correlation by
using the Gaussian interpolation formula for the
Hubbard 6 function given by Singwi et al. ,

' evalu-
ated at r,*=r,m */m appropriate to liquid and
solid densities.

For the liquid-structure factor a (q) we take
the analytic form of the hard-sphere Percus-
Yevick model given by Ashcroft and Lekner. '
The solid-structure factor is

a'(q) =N 'Q exp[Op (R,'-R, ')]

(exp[fan

u, (0)]exp[-~j u, (0)])
r, s'

where R, is the equilibrium position for the lth ion and u, (t) is the displacement from this position at
time t. If we assume that the ions of the melting solid vibrate as uncorrelated ((u,u, .) =0, l al ) oscil-
lators, harmonic in a self-consistent phonon sense, then

a'(q) =V 'g expbq (R,'-R) ')][e ""+&g
g

(1-e '~")]= "
&(q-G)lf(G)I'e '~'"+1-e "", G&0,

t, l n,

The factors in the Debye-%aller factor are the
ratios of the electron mass to ion mass, the
melting temperature to Debye temperature, the
rydberg to Debye energy, and the wave vector to
the inverse Bohr radius. The, form factor for
the unit cell, f(G), differs from unity only for
the hexagonal metals. Calculations of UD and
U» then reduce to sums over nonzero recipro-
cal-lattice vectors 6 and integrals, all of which
converge rapidly except for the band-structure
integral which converges rather slowly because
of the slow convergence of C(q). But because

lima (q) =1,

the difference between liquid and solid band-
structure energies does converge rapidly.

Input parameters and the calculated and experi-
mental results are shown in Table I. Macroscop-

. ic data were taken from the Liquid Metals Hand-
book, ' and eD from Kittel' and from neutron-
scattering data. ' Since phonon energies in Cd
are not well known, eD was determined by re-
quiring the critical displacement in the Linde-
mann criterion to scale with those for Mg and
Zn. '0 For all elements, m */m was taken to be
unity. Otherwise the calculations for the alkali
metals parallel those of Price, Singwi, and
Tosi" for the mechanical properties of the alka-
lis and include the approximate modification of
the Hartree energy [their. Eg. (19b)] for stability
at zero pressure. For the polyvalent metals no
correction was made to the Hartree energy.
Core radii for Pb, Zn, Tl, and Al are those for
which calculated band structure and liquid resis-
tivities agree with experiment. " Core radii for
Mg and Cd were taken from band-structure data. "
The agreement between theory and experiment is
remarkably good considering the approximations
made and the numerical difficulties. '4

Because L is a small difference between two
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Table I. Input parameters and the calculated and experimental latent heats in milli-
rydbergs per ion. For all elements m*/m=1. The c/a ratios for Mg, Zn, and Cd are
assumed unchanged from their room-temperature values 1.624, 1.856, and 1.886, re-
spectively.

dense ty hQ
-3 0

(g cm ) n (solid)
r (a. u. ) T {K) L, th. L, exp

(mR y/ i on) (mRy/ i on)

Li

Cs

Mg

Zn

Cd

AL

Pb

0.519

0.928

0.825

1.475

1.84

1.572

6.92

8.02

2. 38

11.29

10.59

0. 015

0.025

0.024

0.025

0. 026

0.042

0.069

0.047

0.066

0.032

0.036

1.40

1.69

2. 226

2. 40

2. 62

1 .38

1.27

1.405

1.117

1.033

1.48

452

371

337

3l2

302

924

693

594

933

576

600

335

156

91.1

55. 5

39.5

370

235

143

428

78. 5

104

-1.12

1.48

1.69

1.88

9.7

6. 2

6. 6

15.5

4. 3

15.7

3.49

1.98

1.82

1.66

1.60

6.37

5.08

4. 73

8. 25

3.28

10.49

large numbers it is necessary to investigate the
dependence of L on the input parameters. Table
II, for Al, demonstrates that there is no patho-
logical sensitivity to changes in the parameters,
except possibly for changes inm*/m. Because
Al has the smallest r, of the simple metals, it
provides a severe test for the calculations. We
believe that the observed insensitivity indicates
that the calculated values of L are physically
meaningful.

Of the many assumptions implicit in the above
calculations perhaps the most suspect is that of
the hard-sphere model. However, the well-
known discrepancy between the hard-sphere val-
ues for a (0) and hBT )(r/A„where Xr is the iso-
thermal compressibility, '6 may not be very im-

portant. As a (0) is decreased, the liquid band-
structure energy becomes less negative and the
direct ion energy more negative by almost the
same amount. We estimate that if a (0) is de-
creased from the hard-sphere value of 0.025 to
0.014 with a (q) ~a (0), then the value of I for
Al will change by less than 1.0 mRy/ion. The
most serious difficulty presented by the calculat-
ed results would seem to be that the variation of
L among the alkalis is opposite to that observed
experimentally. Hopefully the use of better liq-
uid-structure factors will remedy this difficulty,
though it may be necessary to do the calculation
in real space. "

We wish to thank D. Stroud, D. L. Price, T. 0.
Woodruff, S. D. Mahanti, F. Toigo, and A. Rah-
man for useful comments on this work.

Parameter
Change

(%)

ZL
(mBy/ion)

Density
a Qo/Q0(solid)
+c
eD
m +/m

-10
-10
-10
-10

4

-0.6

-5.1
842

-6.8

Table II. For changes in the input parameters listed,
the latent eat of aluminum is decreased from the va-
lue 15.5 m y/ion by Ef . The effective mass m*/m
= 1.04 is suggested in Bef. 15; the resulting change in
L brings it into close agreement with experiment.
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Measurement of Hyperfine Structure in the Relaxed-Excited State
of the F Center in KI by Optical Triple Resonance*
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An optical method for detection of electron-nuclear double spin resonance in the re-
laxed-excited state of I centers is described. It has been successfully applied to KI.
The hyperfine splittings inferred from these measurements indicate a relatively com-
pact wave function for the relaxed-excited state.

For the I' center in KI we have detected elec-
tron-nuclear double spin resonance (ENDOR) in
the relaxed-excited state by a special optical
triple-resonance technique. As in our earlier
work' on the electron spin resonance (ESR) of the
relaxed-excited state, the method relies on the
large electron-spin memory exhibited by the F
center in an entire pumping cycle. By subjecting
the relaxed-excited state to resonant micromave
(ESR) fields II, and radio-frequency (ENDOR)
fields H» while the F center is being pumped with
o or o (circularly polarized) light, the spin
memory can be partially erased. As a conse-
quence, the rate of pumping of the ground-state
spin polarization P, is increased. [P,= (n'-n )/-
(n '+n ), where n ' and n are the m, = + —,

' and
m, =-& populations, respectively. ] Changes in
I', thus induced by the resonant effects in the ex-
cited state are measured (and hence the signal is
detected) by continuous monitoring of the magnet-
ic circular dichroism (MCD) of the absorption
band. Thus the fundamental detector in these ex-
periments is the ground-state spin system itself.

In our earlier work, I', was the product of dy-
namic equilibrium between unsaturated optical

pumping and ground-state spin-lattice relaxation.
With the optical-pump intensity adjusted to give
optimum sensitivity, I', can change at a rate no
greater than -2/T, in response to the application
of H, fields resonant mith the relaxed-excited
state. Here, T, is the spin-lattice relaxation
time. (For appropriate rate equations, see Ref.
1.) Since &, is of the order of seconds, ' the re-
sultant slow detector response time mitigates
against the use of lock-in detection on the ESR
or ENDOR effect itself.

To circumvent the above limitation, our pres-
ent experiment uses saturated optical pumping.
A high-intensity optical pump tuned to one MCD
peak of the absorption band is switched symmet-
rically between v' and o polarizations at a 50-
kHz rate. It is well known' 4 that either o' or 0'

alone would produce P, -+40'%%uo or P, -40 lo, re-
spectively, for the E center in KI. Now, with
rapid and symmetrical switching of the light po-
larization, and in the absence of resonance ef-
fects on the excited state, only the time-average
value I', =0 is produced. But suppose a micro-
wave II, field, resonant with the relaxed-excited
state, mere switched on and off synchronously


