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For these paraDleters the plasDla frequency is (dp

=1.54 k 10~~ rad/sec, and the ratio of the speed of light
in the medium to c* is 67. The critical power for the
incident beam is 551.8 W. The dielectric constant &2

is 1.26 & 10 7 esu. The incident intensity here is 2.8
&& 107 W/cm2 which lies below the surface ionization
intensity for Illsb of 3 x 10 W/cm

N. Tzoar and J. I. Gersten, to be published.
YThe initial beam profile is assumed to be of the

form E2=E02 exp(-2r2/a ).
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A simple model of heat flow across a metal-insulator interface is used to calculate the
spatial variation of the temperature. The characteristic distance for the temperature
gradient to reach its bulk value is shown to be of the order of the phonon mean free path
in both the metal and the insulator. Explicit expressions are presented for the electron
and phonon contributions to the interfacial thermal resistivity.

In this Letter we present a semiclassical description of heat transport across a metal-insulator in-
terface. %e shall be particularly interested in the temperature e profile near the interface, where the
usual local relation between the heat flux and the temperature gradient is no longer satisfied.

A knowledge of the temperature distribution is important in determining the thermal boundary resis-
tance between two solids, or a solid and a liquid, since the temperature at the interface is usually ob-
tained by a linear extrapolation' of the temperature measured relatively far from the boundary. Most
theoretical studies' of these phenomena seek to determine the temperature difference across the inter-
face, and do not consider the details of its spatial variation.

In addition, the electron contribution to the heat flux across the interface has received relatively
little attention since it is commonly assumed that they are almost uncoupled to the phonons in the in-
sulator. Little, ' and subsequently Andreev, presented the first models of just how such a coupling
might arise.

In the present work we use a simple Boltzmann-equation approach to provide a phenornenological de-
scription of thermal transport across a metal-insulator interface. This allows an explicit calculation
of the temperature profile and a qualitative assessment of the effects of different surface conditions as
well as the nonEocality of the transport near the interface. The latter leads to some rather interesting
results concerning the role of electrons, even in the limiting case of zero electronic heat flux exactly
at the surface.

%e take the metal to occupy the right half-space x & 0, and the insulator the left half-space. A steady
heat flux 4 is imposed, and we seek the steady-state temperature distribution.

The electronic contribution to the heat flux 4, is obtained by solving the usual Boltzmann equation'
for the electron distribution function f=f,(T(x))+p:

Bp cp 6fo eu 6T
xe~ 7. xg~

where f, is the Fermi-Dirac distribution at the local temperature T(x) and Fermi energy u(x), and v

is the relaxation time. The thermoelectric force, which is necessary to assure that the electrical cur-
rent is zero, will be neglected here since it leads to a correction to VT of the order of (kT/uP.

The relaxation-time approximation is a crude representation of the effect of collisions and is subject
to the usual criticism in that it does not accurately describe inelastic- scattering. It furthermore fails
to take account of the different relaxation rates of the various anisotropies in the spherical harmonic
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expansion of p. It is nonetheless the simplest representation of the scattering processes and will be
employed here.

In the same spirit the interface will be represented by a boundary condition

y(V„, V» V,) =pp(-v„, V» V,) at x' =0, (2)

where y (Pp) represents the incident (reflected) electrons.
The P =0 case represents the limiting condition of thermalization on contact, while P =1 represents

specular reflection and therefore zero heat flux across the interface. Equations (1) and (2) are readily
solved and the corresponding heat flux, calculated to lowest order in 0T/u, is given by

(3)

where C, V, and l =Vs represent the electronic specific heat, Fermi velocity, and mean free path, re-
spectively. The kernel is given by the exponential integral

"dt „, dig
(4)

A similar analysis for the phonon heat flux yields, in the Debye model, a result identical to Eq. (3)
with C, l, and V replaced by the appropriate quantities for the phonons. Strictly speaking one obtains
a sum of three terms, corresponding to the different values of these parameters for the three acoustic
branches. For simplicity we retain the single term, Eq. (3), with an average sound velocity, etc. The
general case is also readily soluble by the methods to be presented below.

When only one type of excitation is considered on each side of the interface, we must solve Eq. (3)
for V T in each half-space. For P =0 the latter is readily soluble by the Wiener-Hopf method, and is
in fact closely related to the well-known Milne problem. Anticipating the result we decompose V'7."

= T„(0)5(x)+VT„(x) into a singular (6 function) part and smooth part T„which, as we now show, satis-
fies the Milne equation. Inserting this decomposition in Eq. (3) with p =0, and integrating by parts, we
obtain from Eq. (4)

J = dx' T~ x' E2 — dx' T~ x' E2

Differentiating with respect to x yields Milne's equation:

T„(~)= .'f,"d~ -T (~ )E,(Ix x'i/&)-

This equation has been. studied in considerable detail and approximate expressions for the temperature
near to and far from the interface, with z the bulk thermal conductivity, are given byJl, xT(z)-T(0) = — (1--'z Inz), 0 &E = —«1

IC 3 l

Jl—=——(E+0.Vl) Z» 1.
K

The temperature distribution is therefore given exactly by the solution of the Milne equation, and an
identical solution obviously applies in the left half-space, with a a and l appropriate to the relevant ex-
citations. The ideal contact, P =0, is therefore characterized by a surface resistance

5T 1 1
z cv, cv„'

the subscripts referring to the thermal carriers on the left and right.
If the surface temperature difference is obtained by an extrapolation from far from the interface, the

"measured" surface resistance will be 1.23RE as is seen from Eq. (7).
The Wiener-Hopf method can equally well be applied to situations where several different types of

excitations contribute to the heat flow in parallel, as long as P =0. In such cases the kernel of i.ntegral
equation for VT is a difference kernel which decreases exponentially at large distances. For p v 0 one
no longer has a difference kernel and the solution is far more complicated.

1638
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We shall therefore concentrate on the one-dimensional case since the kernels then become simple
exponential integrals, Eq. (4). We see in fact from Eqs. (3) and (4) that the three-dimensional case can
be regarded as a superposition of a continuum of thermal excitations in one dimension, with mean free
paths l/f (1 & l &~) and relative weights dt/P. This corresponds to the continuous angular distribution
in three dimensions, where t ' =

~
Vx ~/V.

If tllel e al'e K types of excitatiolls ill a givell llledluII1, tile one-dImenslonal aI1alog of Eq. (3) 18

C,v, ", , (
x-x''t -(x+x') (J=QZ. j.=- ' * dx'VT{x') exp- -p exp

Considering first only a single excitation, ere obtain for x&0

l 1-pT(x)-T, =-—x+ —,~{P)=
~{p) ' 1+p

We note that the temperature jump at the interface persists for all P except P =-1, in which case T is
equal to its bulk value just as if there were no surface. This is also true in three dimensions as can
be seen from Eq. (3). The P =1 case leads to an infinite temperature jump which is expected since this
boundary condition requires that the heat flux vanish at x =0.

With two types of excitations the solution of Eq. (8) yields

VT'(x) A2 Ay —g Ay

VT() ' ' l, l, L 'l, 'l2
-1= (a -a )&(x)+ ———e~ a —-a—

a,. =(L'+Ll,o,)/(L'-.l,'.), V T( .) =-Z/(«, +«,),

where a is defined in Eq. (9). The characteristic length L is given by

(10)

and is obviously intermediate between l, and l2. If there are N exeitations instead of 2, there are N-1
characteristic lengths L located between adjacent values of l, as can be seen from Eq. {11).The three-
dimensional case, considered from this point of view, leads to the conclusion that Eq. (10) is then
modified to contain a continuum of exponentials with characteristic lengths between 0 and l. In the
Milne problem this is indeed the form of the exact solution. ' It is further interesting to note that with
an appropriate choice of the parameters, Eq. (10) fits this exact solution to within 2%. This means
that in the present context, a simple model using two different mean free paths provides a surprising-
ly accurate approximation to the exact solution for a continuum of mean free paths.

We now apply Eq. (10) to simultaneous heat conduction by electrons and phonons in a metal. We take
l, » l~, V, » V~, and e~ &+„and we obtain for x & 0

Jx J I+no(1+8) "'{1+8[1-exp{-x/l (I+A)'")P«C V n I+~ [n '+{I+a)'"tC V/C V

where R = C~7,/C, 7'~.

The first term multiplying the bracket represents the phonon contribution to the interfacial resis-
tance, while the remaining terms describe the modifications due to the electrons. We note that the
electron coupling at the interface n, is multiplied by ,C/V~C~-VT, and can therefore become quite
important at low temperatures even for relatively small values of e,. This will clearly have the effect
of reducing the interfacial resistance.

Secondly even if e, =-0, i.e., no electron coupling at the interface, the electrons still contribute to
the surface resistance by virtue of the nonlocal r elation between the heat flux and the temperature gra-
dient. A quantitative estimate of their contribution would require a knowledge of R, which contai. ns the
ratio of the electron and phonon relaxation times.

We shall not attempt this here since in addition to the considerable uncertainties with regard to the
phonon contribution to the thermal conductivity in metals, one is faced with the problem of choosing
an appropriate relaxation time. The latter ean be quite different near the surface and in the bulk since
the distribution functions are highly anisotropic near x =0. Further progress in this direction would
require a rathex detailed study of the coupled electron-phonon system, without invoking the relaxation
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time approximation.
Finally we note that the characteristic length in Eq. (11) is of the order of the phonon mean free

path. It is within this distance that the electron heat current rises from its surface to bulk value. This
is independent of the o."s and is much shorter than the electron mean free path. %e expect this conclu-
sion to be approximately valid in three dimensions as well, so that the large texnperatuxe gradients
are within R distance of order /~ from the surface. Fux ther on the temperature gradient is approxi-
mately constant and therefore one essentially observes bulk behavior for distances greater than /~.

This is perhaps an explanation of why measurements of V T in metals have failed to show any mean-
free-path effects since the relevant distance l~ is much shorter than E,.
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The latent heats of melting for simple metals at normal pressure are calculated by the
pseudopotential method. The Percus-Yevick hard-sphere model is used for the liquid-
structure factor, and an uncorrelated harmonic oscillator xnodel is used for the solid-
structure factor. Numerical results agree well enough with experiment and are suffi-
ciently stable against changes in the parameters to make further calculations of the la-
tent heat seem worthwhile.

In this Letter we propose that the latent heat
of melting may be calculated for simple metals
by the pseudopotential method. Along the melt-
1ng cux've the Glbbs functions fo1 llguld and solid
phases must be equal. Therefore, the latent
heat of melting I. is

treatment of this interaction by the pseudopoten-
tial method makes the calculation tractable. Be-
cause of macroscopic charge neutrality the ho-
mogeneous parts of the bare electron-ion interac-
tion, electron-electron direct interaction, and
interionic direct interaction sum to a finite re-
sult, the Hartree energy:

where 6 denotes the difference between liquid
and solid quantities. At atmospheric pressure
pb, V is entirely negligible, and the latent heat is
given by the difference in internal energies AU.

The internal energy of a simple metal, in ryd-
bergs per ion, includes the kinetic, exchange,
and correlation energies of the electron gas':

Ug ——2.21Z/r, -0.916Z/r; (0.115-0.081 lnr, )Z,

where r, is the Wigner-Seitz radius in atomic
units and we have used the Nozieres-Pines inter-
polation formula for the correlation energy. '

The energies of the conduction electrons are
changed by interaction with the ions, and the

U H
= lim [m, (q) + 8~Z/q'] ZQ, ',

where 0, is the volume per ion and w, (q) is the
bare ion pseudopotential. The contribution to the
latent heat from the above terms depends only
upon the volume change on melting and is inde-
pendent of structure. Since the kinetic energies
of the ion cores at melting are UE = ~k&T for
both liquid and solid, only two important contri-
butions to the system energy xemain.

The difference between the direct ion interac-
tion Vo(q) =8vZ'/q' for the structure of the sys-
tem and that of the homogeneous jellium is, for


