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According to (4), in contrast, the constant 5 de-
fined in (3) is positive, and hence )( increases def-
initely as II increases as long as H is less than
H*/ve. For real solids, such a simplified expres-
sion as (4) may not necessarily hold because of
complicated band structure and the most general
expression (1) should be applied instead. How

ever, it seems to be the case, without detailed
analysis, that the appearance of an II'lnH term
may alter whether g increases or decreases with
H from what is expected on the simple band mod-
el.

Taking, in particular, nearly ferromagnetic
Fermi liquids for which the enhancement factor
(1+2yg) ' is very large, one finds that there
exists a certain similarity between the tempex a-
ture variation and the field variation of the sus-
ceptibility. If the density-of-states function y,
is assumed, near the Fermi level, to be rela-
tively smooth and if its higher-order derivatives
may be ignored, then the logarithmic tempera-
ture dependence of X is determined dominantly by
the term -y'g"(1+2') ', where g"—= 8'g, „/8e'
[cf. Eq. (2) in Ref. 6], while the magnitude of the
logarithmic field variation is given by -gag"(1
+2cpg) ' as is seen from (1). From this corre-
spondence and from the negative definiteness of
the sign of the T'lnT term, ' it follows that the
sign of h in (3) is positive for these systems.
This may resolve the contradiction between the
band theory and the experiment for the H depen-
dence of X in Pd. o Finally it should be mentioned

that such a prevailing view, '0 in which the sign of
v and the magnitude of D can be determined on
the basis of (2) from experiment, 18 losing ground
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cifically we find that in InSb a light beam of in-
tensity 2.8 X 10' W/cm' will self-focus in 190
vacuum wavelengths. This demonstrates that at
these high intensities one cannot treat this and
similar classes of problems without propex ly
taking into account the effects of the nonlinear
conductivity of the medium on the propagation
of the primary waves.

Since the original work in self-focusing, this
topic has received much attention in the litera-

We propose a new mechanism for the self-focusing of electromagnetic radiation in
degenerate semiconductors. The effect is due to the velocity-dependent mass of the
conduction electrons. Calculations for InSb and a typical laser intensity give a theoret-
ical focal length of 2.06 mm.

Important non1inear optical properties of de-
generate semiconductors stem from the non-
parabolicity of the electronic conduction bands.
A striking manifestation of this effect —the mix-
ing of light waves —has been demonstrated ex-
perimentally~ and calculated theoretically. 2 In
this Letter we calculate the essential limitation
on this and similar nonlinear optica1 experi-
ments imposed by a well-known basic process
of recent interest, namely, self-focusing. ' Spe-



ture, both theoretically and experimentally. '
While initially it was studied in liquids, recent
investigations have expanded to solids, vapors,
and plasmas. ~ Previously considered effects
leading to self-focusing include electrostriction,
the Kerr effect, thermal perturbati. on of the
medium, nonlinear electronic polarization, and
forward stimulated Brillouin scattering.

We propose here a new mechanism in which
the conduction electrons in semiconductors play
a strategic role. We show that the nonparabol-
icity of the energy-momentum relation can give
rise to strong nonlinearities in the current, con-
ductivity, and dielectric constant. Indeed, for
InSb, our calculations' yield a nonlinear dielec-
tric constant e, whose magnitude is among the
largest known for any system. In the most gen-
eral case, both relativistic and band-structure
effects are responsible for the nonparabolicity.
Even for the free-electron gas, nonlinear effects
arise in the interaction of light with plasmas
when v/c-1. This is usually an unimportant
effect in solid-state situations since there v/c
«1. However, because of band-structure inter-
actions, in degenerate semiconductors the Ham-
iltonian in the effective-mass approximation near
the bottom of the conduction band formally re-
sembles a relativistic Hamiltonian. This sim-
ilarity may be exploited to develop a pseudo-
relativistic dynamics for the conduction elec-
trons. We show here that this process can lead
to the self-focusing of a single intense light beam.
This mechanism may weII dominate the interac-
tion of laser light with semiconductors at suf-
ficiently high intensities. Possible application
of the self-focusing effect can be found in the
study of the electronic properties under the in-
fluence of powerful radiation.

In the absence of external fields, the electron-
ic Hamiltonian may be expressed as

e, = [(E,/2)*+E,P*/2m +]"*

[(mgcg)2 + (cgp)2]1~2

where E, is the gap energy, and m* and p are
the effective mass and momentum of the elec-
tron, respecti. vely. We have defined a speed c*
by c*=(E,/2m*)"2. As far as the dynamics of
the electrons are concerned, c~ plays the same
role as the conventional speed of light, c. Its
magnitude is roughIy two orders of magnitude
smaller than the speed of Iight in the medium,
however.

The external field may be introduced via, the
minimal coupling p-p+eA/c, the equations of

motion of the electrons being

d v e
@

v&&B

dt [1-(v/c+)2]'" m2 c

Since we are interested in the long-wavelength
response, quantum dynamics is unnecessary.
If we use v &c*«c, it follows that

d v e dX
dt [1-(u/c*)']'" m*c dt

Thus, unlike the situation in a true relativistic
plasma, magnetic effects are negligibl. Assum-
ing the vector potential to be switched on adi-
abatically, we may integrate Eq. (3) to give

m +v[1-(v/c*)'] '" -eA/c =
Q, (4)

where q is the initial momentum. The initial mo-
menta are assumed to be distributed according
to the Fermi-Dirac distribution function fexp[P(B,
-E „)]+1) ', where B,=[(m*c**)'+(qc*)']'".

The current J is -nev, where n is the conduc-
tion-electron number density. After some alge-
bra we derive the following expression for the
current density:

1+-',a 3 eA ' 1
5)(1+L)212 8 m*c*c (1+&]"2 '

e2 =
2 (47Tne /m +)(e/m+c+(do ) A2,

where co is the angular frequency of the light
and ~~ is the lattice dielectric constant. The
dielectric constant of Eq. (6b) is numerically
identical to the nonlinear mixing coefficient of
Wolff and Pearson. It should be pointed out,
however, that these quantities represent inherent-
ly different physical entities, and indeed the high-
er c„ terms will not be numerically equal. Ao
and A2 respectively refer to the first and second
averages in Eq. (5), and for the range of n of
interest in this paper they may be replaced by
unity. This is equivalent to making the cold-
plasma approximation. Actually, in this case,

where 4 = (q/m~c*)2. Here we have made a power-
series expansion in A and have retained terms
through order A3. Only the fundamental harmon-
ic term has been kept. From Eq. (5) it is a sim-
ple matter to derive expressions for the conduc-
tivity or the dielectric constant e = &, + &Q':

eo = 6g-(4wne /m+(Oo )Ao~
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an expression valid for arbitrary intensity exists
and is given by':

4vne' E{2,—,', 2; y/(1+y))
m~(u ' (1+y)"' (6c)

where y= (eE,/m*c*&u, )* and E is the Gauss hyper-
geometric function. Here E, is the electric field
strength in the medium.

Having derived an expression for the dielec-
tric constant, the remainder of the problem is
straightforward. From Akhmanov, Sukhorukov,
and Khokhlove we obtain the following expression
for the focal length:

ZO.

where the critical incident power isv

I', "=(c~,./32~, k')(I+ v'e, )'.

(7a)
~. 0 /. 5

iA fAN,

FIG. 1. Radius of the beam, x, as a function of depth
in the crystal, z.

Here I', is the incident power in the beam, a is
the beam radius, and 0 is the wave-propagation
vector in the crystal. In Eqs. (7) we have taken
account of the reflection of the beam at the sur-
face.

Naively interpreted, the model predicts the
focusing of the beam to a point in a distance A.
IQ Rctualltyq becRuse of the omission of higher-
order terms in Eq. (5), neglect of losses, and
neglect of coupling to the higher hRrmonics, B
represents the distance over which a dramatic
shrinkage of the beam size has occured.

An estimate of the focal length for InSb Rnd a
typical Q switched-laser intensity ls made using
the above formulas. The following values were

6,employed:

&u, =1.742&&10" rad/sec (10.81 pm), e~ =16,

n=2. 0~10~ cm, P; =2557%,

m*= m, /60, E, =0.234 eV,

a = 0.0054 cm, T = 77'K;

and this gave R =1.79 mm for the theoretical
focal length.

From our formula (6c) it is clear that the di-
electric function will saturate at high field
strengths to the value &~. We note that, in con-
trast with other calculations, in the present work
the analytic expression for the dielectric con-
stant valid for all field strengths is obtained.
This feature is essential to the proper descrip-
tion of the self-focusing profile since the con-
traction of the beam produces R considerably
amplified field intensity. Consequently, formu-
las (Va) and (Vb) are not strictly valid near the

focal point. A detailed numerical calculation'

changes the focal length from 1.79 to 2.06 mm.
Unlike the previous case the minimum beam size
is finite and equals 6.66 pm. Beyond the focal
length the radius of the beam is found to bounce
back. The radius of the beam as a function of
distance is given in Fig. 1 by the solid curve.
Notice that the focusing occurs in a fairly grad-
ual manner, in contradiction to other calcula-
tions which predict a precipitous contraction to
the focal point. The difference is traced to the
use of Eq. (6c) rather than the quadratic form.
The saturation tendency manifests itself in strong
deviations from the quadratic formula at even
moderate values of E'. Thus, as the beam con-
tracts, the effective ~, decreases. This in turn
causes the contraction to proceed at a slower
rRte. FGI comparison's SRke the beam profile
for the quadratic approximation is indicated by
a broken line in Fig. 1. Thus, Rs the focal point
is approached, the two curves depart from each
other.
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For these paraDleters the plasDla frequency is (dp

=1.54 k 10~~ rad/sec, and the ratio of the speed of light
in the medium to c* is 67. The critical power for the
incident beam is 551.8 W. The dielectric constant &2

is 1.26 & 10 7 esu. The incident intensity here is 2.8
&& 107 W/cm2 which lies below the surface ionization
intensity for Illsb of 3 x 10 W/cm

N. Tzoar and J. I. Gersten, to be published.
YThe initial beam profile is assumed to be of the

form E2=E02 exp(-2r2/a ).
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A simple model of heat flow across a metal-insulator interface is used to calculate the
spatial variation of the temperature. The characteristic distance for the temperature
gradient to reach its bulk value is shown to be of the order of the phonon mean free path
in both the metal and the insulator. Explicit expressions are presented for the electron
and phonon contributions to the interfacial thermal resistivity.

In this Letter we present a semiclassical description of heat transport across a metal-insulator in-
terface. %e shall be particularly interested in the temperature e profile near the interface, where the
usual local relation between the heat flux and the temperature gradient is no longer satisfied.

A knowledge of the temperature distribution is important in determining the thermal boundary resis-
tance between two solids, or a solid and a liquid, since the temperature at the interface is usually ob-
tained by a linear extrapolation' of the temperature measured relatively far from the boundary. Most
theoretical studies' of these phenomena seek to determine the temperature difference across the inter-
face, and do not consider the details of its spatial variation.

In addition, the electron contribution to the heat flux across the interface has received relatively
little attention since it is commonly assumed that they are almost uncoupled to the phonons in the in-
sulator. Little, ' and subsequently Andreev, presented the first models of just how such a coupling
might arise.

In the present work we use a simple Boltzmann-equation approach to provide a phenornenological de-
scription of thermal transport across a metal-insulator interface. This allows an explicit calculation
of the temperature profile and a qualitative assessment of the effects of different surface conditions as
well as the nonEocality of the transport near the interface. The latter leads to some rather interesting
results concerning the role of electrons, even in the limiting case of zero electronic heat flux exactly
at the surface.

%e take the metal to occupy the right half-space x & 0, and the insulator the left half-space. A steady
heat flux 4 is imposed, and we seek the steady-state temperature distribution.

The electronic contribution to the heat flux 4, is obtained by solving the usual Boltzmann equation'
for the electron distribution function f=f,(T(x))+p:

Bp cp 6fo eu 6T
xe~ 7. xg~

where f, is the Fermi-Dirac distribution at the local temperature T(x) and Fermi energy u(x), and v

is the relaxation time. The thermoelectric force, which is necessary to assure that the electrical cur-
rent is zero, will be neglected here since it leads to a correction to VT of the order of (kT/uP.

The relaxation-time approximation is a crude representation of the effect of collisions and is subject
to the usual criticism in that it does not accurately describe inelastic- scattering. It furthermore fails
to take account of the different relaxation rates of the various anisotropies in the spherical harmonic


