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The strongly localized model of disordered alloys, where the random perturbations
are localized to a single lattice site, is shown not to have much applicability to real sys-
tems when the self-consistency requirement on the potential is included.

A particularly simple model has played a cen-
tral role in the development of the theory of
alloys.'”*® This model assumes that the pertur-
bation introduced by alloying is localized on a
given lattice site and does not extend to its neigh-
boring sites. In terms of some appropriate lo-
calized set of wave functions centered around
each atom, this perturbation is assumed diagonal.
One of the more successful techniques for ap-
proximately solving the alloy problem has been
the coherent-potential approximation (CPA),?3
All of the applications of the CPA which have
yielded numerical results have utilized this mod-
el of a strongly localized perturbation.3 ! De-
tailed calculations based on this model have
yielded numerical data on many properties as a
function of composition, electron-per-atom
ratio, and size of the perturbation. In these cal-
culations the aforementioned variables have
been assumed to be independent of one another.

As has been extensively discussed elsewhere,
self-consistency requirements on the alloy per-
turbations add an additional restraint which has
been neglected in the CPA calculations. The pur-
pose of this Letter is to point out that the addi-
tion of this restraint causes a drastic restriction
on the applicability of the localized model to real
alloys. In fact, it is not an exaggeration to state
that the localized-perturbation model has essen-
tially no applicability to real systems.

Consider a dilute alloy where the various im-
purities are, on the average, many atomic spac-
ings apart. In this case the effect of each im-
purity can be considered independent of the other
impurities. Let us therefore consider a single
impurity in an otherwise pure host. This im-
purity introduces a perturbation which, because
of the shielding of the conduction electrons, is
localized in its vicinity. We assume in this dis-
cussion that the impurity perturbation does not
change the volume of the alloy. The actual per-
turbation present is a function of two factors:
one the ion-core perturbation, and the other the
perturbation introduced by the rearranged dis-
tribution of conduction electrons. The conduc-
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tion electrons are distributed around the impur-
ity in such a manner as to shield it completely.
This requirement places a restriction on the po-
tential produced by the perturbation. If the host
is a free-electron gas, this restriction can be
expressed as the Friedel sum rule,

Z=(@2/mD,(21+1)5,. (1)

Here Z is the increased number of electrons
added to the host by the impurity to maintain
charge neutrality, ! is the angular momentum

of the spherical partial wave, and 6, is the phase
shift in this partial wave introduced by the per-
turbation. It is assumed that the perturbation
has spherical symmetry. Another consequence
of the complete shielding of the impurity is that
the Fermi level remains unchanged by the addi-
tion of dilute impurities.*

The important thing to note is that the pertur-
bation is not a completely independent variable
but has the condition (1) placed on it.

The self-consistency condition on a potential in
a dilute alloy will have to be modified from (1)
when the host is not a free-electron gas. We
consider the strongly localized model which has
been extensively studied in the CPA, namely,

a single-band tight-binding alloy whose Hamil-
tonian is given by

H=2 €, ln>(n|+WZ“éln><n+Bl. 2)

Here €, has the value €, or €, depending on wheth-
er a type-1 atom or a type-2 atom, respectively,
is at the nth site at ﬁ,,. The atomic state cen-
tered at R, is denoted by |z). The second sum
on the right of (2) is, for fixed n, over nearest
neighbors, and then summed over sites. W is
an overlap integral assumed the same regardless
of the type of neighbor.

We limit ourselves to the dilute case which is
equivalent to solving for an isolated impurity.
Let the host be of type-1 atoms and the impuri-
ties of type 2. Then as shown by Mann,'® the
self-consistency requirement becomes

=(2),. -1(T€00(E §)
z <Tr>tan (—*1—_2_*“6—:1@:‘>, (3)
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where Z is the difference in valence between the
type-2 impurities and the type-1 host, Ey is the
Fermi energy, and €,,=€,~¢€,; also,

Po(E) =sz(2n)-sffE=EFds,,/IVE(E)l, @)
where @ is the atomic volume, dS, is an element
of a constant energy surface in & space, and

G 5, =P[po(E)E/ (E ;~E),

with P symbolizing the principle value.

We note that the self-consistency condition (3)
prevents €,, from being an independent variable,
contrary to the usual assumption in CPA calcula-
tions. For example, consider (3) for the case
where the host and impurity have the same val-
ence (Z=0). If we assume that the host is metal- {

(5)

g5, Po(Ey)

lic so that p,(E )20, the only possible value is

€,=0, Z=0. (6)

Since when €,, =0 we have no alloy, we im-
mediately note that the model (2) cannot apply
to a metallic alloy composed of components with
the same valence.

If we assume that the host is insulating or semi-
conducting so that p,(Ef) =0, then ¢,, is not de-
fined by (3). Equation (3) assumes that the solid
is in its ground state. To determine €,, we must
consider the self-consistency requirement for
the solid in an excited state. If we consider the
excited state where all the electrons in the en-
ergy interval E, to E,+AE, are excited from a
completely occupied band to occupy fully the en-
ergy interval E, to E,+AE, in an initially empty
band, the self-consistency requirement leads to

gEl'

(3')

Z=<—2-> tan"?(TS2ifor) (EF)>-~=L2€ AE,Im
\7 1-€,,Gg, T

where
&5 =Gy=inp,(E) and g’ =dg/dE.

Here we used the relationship that AE,p,(E,)
=AE,p,(E,). For Z=0, (3’) is satisfied for all
possible E, and E, only when €,, =0, even when
Po(E §)=0. Thus, even for an insulating semicon-
ducting host, Z=0 requires that €,,=0.

Consider (3) for the case where the host and
impurity have a valence differing by one (Z=+1),
In that case the only possible value is

€:=Gg N (M

If Z=+1, we expect that €,, <0, while for Z=-1
we expect that €,, >0. Requirement (7) does not
permit both of these possibilities to exist simul-
taneously. Depending on the details of the host,
which determines whether G EF is positive or neg-
ative, the model of (2) can apply to either Z=1
or Z=-1 but not both simultaneously. If reason-
able host properties are assumed, then the con-
dition (7) leads to a bound state for the impurity.
For no values of ¢,, can condition (3) be satis-
fied if Z has any other integer values. Thus the
model can be used only for one of the possibili-
ties Z=1 or -1 and then only for a potential so
strong that a bound state occurs. Physically
both Z=11 can occur for a given host, and it ap-
pears that the strongly localized model is not
physical because it cannot describe this.

Other models of a strongly localized perturba-
tion besides (2) have been employed.®? They
all have in common the case that the perturba-

(l‘ezxgE'z)po(Ez) - 1_€21gE1:| ’

I tion occurs in the diagonal portion of the Hamil-
tonian as in (2). The same conclusion holds for
them too. Their nonphysical behavior is related
to the fact that the self-energy induced by the
perturbation is independent of k, i.e.,

Z(z,K)=Z(2). (8)

The self-energy Z(z, k) is defined by
G,[k)=[2~E,-Z(z,K)],

where G, (k) is the diagonal element for the k
Bloch state of the Green’s function of the alloy
averaged over all impurity positions, E, is the
unperturbed energy of the k Bloch state, and the
Green’s function is defined by

G,=(@-H)L

In (10), H is the Hamiltonian of the alloy.

If we take the special case of the free-electron
host, then the strongly localized model reduces
to the condition that only §,#0. The self-consis-
tency condition (1) adds the additional restriction
6,70 when Z=0. Thus all these shifts are equal
to zero in the strongly localized model, and we
can no longer have a perturbing impurity. If the
perturbation is more extended so that more than
one phase shift is nonzero, we can satisfy the
self-consistency condition (1) for Z=0 without
requiring that all phase shifts be zero.

Numerical results for alloys calculated in the
CPA have only been obtained for the strongly
localized perturbation model.3"®!' Ag indicated

)

(10)
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above, this model has no applicability to alloys
for Z even, and only extremely limited applica-
bility to alloys where Zis +1. The self-consis-
tency requirement on the potential requires that
the perturbation of an impurity be more extended
than allowed by the strongly localized model.
Although calculations in the CPA have been close-
ly tied in with the strongly localized perturba-
tion model, the inapplicability of this model does
not mean that the CPA is not applicable nor does
it necessarily mean that all conclusions on the
properties of alloys obtained from this model
are incorrect. One would expect that the model
cannot be trusted to give quantitative results,
and qualitative results should be treated with
some caution. To conform better with reality,
the model used will have to employ a more ex-
tended perturbation, requiring a reformulated
form"18 of the CPA or a new approach.’® In ad-
dition, the self-consistency of the perturbation
must also be solved simultaneously with the rest
of the calculation. It is not possible to treat the
perturbation as an independent variable to be
varied at will.
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The susceptibility X (H) of a paramagnetic Fermi liquid in a magnetic field is shown to
have the logarithmic form x(H) =x(0) (1-bH?1nH), and hence the free energy of the system
cannot be expanded in powers of H or in powers of the magnetization. Contrary to the re-
sult of the band model, this prediction is consistent with the experimental field depen-

dence observed in Pd.

Among various metals, palladium is one of the
most intractable and hence the most fascinating
from the standpoint of studying magnetism. Re-
cently, for Pd, the magnetic field dependence of
the paramagnetic susceptibility x(H) (or nonlin-
ear magnetization) has been measured,® the re-
sult being expressed approximately in the form
x(H) = x(0)(1 +BH?) with B=6.0x10"1* Oe "2, Prior
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to this experiment Wohlfarth? gave an expression
for B on the basis of the band theory with consid-
eration for the effect of exchange enhancement.
Most recent data® on the band structure of Pd
give us the theoretical value of 8 as negative:

==2.5X10"18 or —1,1X10"2 Qe "2, which appar-
ently contradicts experiment.

Here we shall give a clue as to how this dis~
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