
VOLUME 26, NUMBER 26 PHYSICAL REVIEW LETTERS 28 JvNs 1971

Light Scattering in Superfluid Helium Under Pressure
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(Received 30 April 1971)

We report here a calculation, based on Landau's hydrodynamical equations, of the in-
tensities of the Brillouin spectral components due to density (first-sound) and entropy
(second-sound) fluctuations in pure He II under pressure. In the hydrodynamic regime of
temperature, the intensities of second-sound Brillouin components are found to be as
strong as one tentfg of those of the first-sound components under optimum pressure.

As early as 1943 Ginzburg' pointed out that
Brillouin scattering of light from pure He II
should exhibit two doublets corresponding to two
independent thermodynamical fluctuations, den-
sity and entropy. Indeed, if one ignores the
thermal-expansion coefficient of He II, the densi-
ty fluctuation gets completely decoupled from the
entropy fluctuation. A brief the rmodynamical
analysis shows that the above assumption leads
to the condition that y-1 is zero, y being the ra-
tio of specific heats. C~ is very nearly equal to
C~ for He II away from the X temperature under
normal pressure. Since light is scattered main-
ly by the density fluctuation in pure He II, and

the intensity is already very weak, ' the experi-
mental observation of the high-frequency (10'-
103 Mc/sec) entropy fluctuation (so-called "sec-
ond sound") in He II by Brillouin light scattering
is exceedingly difficult.

There has been-some theoretical work' on the
possibility of indirectly observing sound in 'He
:He II mixtures by way of scattered light from
'He concentration fluctuations near critical opal-
escence. The two basic assumptions involved in
this theory are (1) that the entropy fluctuations
couple strongly to the concentration fluctuations
and (2) that the dielectric constant at optical fre-
quencies has an appreciable dependence on the
concentration of 'He impurities. Recently Pikes,
Vaughan, and Vinen4 have reported the detection,
with a very low signal-to-noise ratio, of such
Brillouin components in 'He: He II mixtures.

A propagating sound wave is always associated
with spatial density variation. This density fluc-
tuation in the presence of a finite thermal-expan-
sion coefficient should give rise to a temperature
fluctuation in He II. This is, admittedly, a very
weak effect in He II under normal conditions.
But since there is a marked inc~ease in the ratio
of the specific heats, y, with pressure, ' the cou-
pling between the density fluctuation and the en-
tropy fluctuation may become appreciable at
some pressure. This opens up the possibility of

)(„s"(k, (u)/(u =Re[Es(k, 8)/a(k)]„, ,0+, (2)

where Es(k, Z) is the Laplace transform in time
and Fourier transform in space of the adiabatic-
disturbance operator Es(r, t), and a(k) is the
Fourier transform of a(r, t) at t =0. The final
procedure in calculating X & "(k, ~) is to recall
that the linear response of a disturbed system
having slow variations in space and time of phys-
ical variables may alternatively be described by
a set of linearized hydrodynamical equations. '
The complicated structure of the absorptive re-
sponse function can be inferred by requiring that
these two descriptions should coincide in the
long-wavelength, low- frequency (~~ & 1, kl & I)
hydrodynamic regime. ' The analytic structure
of the absorptive part of the response function

observing directly the second-sound Brillouin
components in the spectrum of light scattered
from first sound. The purpose of this Letter is
to report the calculation of the intensities of
Brillouin components for first and second sound
in He II under pressure and to explore the feasi-
bility of observing them experimentally.

The Kamarov- Fisher-Pecora theory' in con-
junction with the Wiener-Khintchine theorem
states that the spectrum of light [that is, the dif-
ferential cross section for the photon-scattering
process (k„~,) - (k„~,) j is given by the expres-
sion

k&T Q (ss/3a)s(se/()P) „X„s"(k, &u)/u&.
n, B

Here e is the optical dielectric constant of the
scatterer which is assumed to be a function of
thermodynamical variables a and P, ks is the
Boltzmann constant, and X„s"is the absorptive
part of the response function. In order to calcu-
late the absorptive response function we adopt a
linear-response theory. According to this theo-
ry, if a generalized external perturbing force
—say, Es(r, t) -couples to the thermodynamical
variable P(r, t) of the system, then
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should contain all the information about the Brill-
ouin components. The positions and the coidths

of the spectral lines should be given, respective-
ly, by the real and the imaginary parts of the
Poles, and the corresponding intensities should
be given by the residues at these poles. In what
follows we calculate the relevant response func-
tions using existing hydrodynamical equations
for He II, which ought to be a valid description
in the hydrodynamic temperature regime.

The nondissipative linearized Landau hydrody-

!
namical equations for He II result in two wave-

like equations'o

P(y, t)-v'P(r, f) =0, (3a)

P (p-. /p. )c.'&'T(r, i) =0 (31)

These two equations, under the assumption that
the coefficient of thermal expansion can be ne-
glected, give rise to two independent hydrody-
namical modes, corresponding to density and en-

tropy waves. With the help of the Laplace-Pour-
ier transforms (in time and space, ' respectively)
of Eqs. (3a) and (31), we have derived the follow-

ing expressions for the relevant absorptive re-
sponse function from Eq. (2):

yz~ "(k, &u)/&u = -yes'u» '(cu'-[u»'-y '(y-1)(y-2) 'u»']0'] R(k, co),

X,"(k, (u)/&o = -yugo, '(p, /p„)u» '(~'- [y '(y-1)u»'-u»'] 0'] R(k, (u),

X,."(k, &u)/~ = -(y-1)~2(Bp/BT). [w'-(~»2 ~~202)y2]R(k, ~).

The resonance function R(k, &u) is equal toim[(Z'-u, %') '(Z'-u, '0') '] at Z = ~+i0', with

~,'= (yP, /p)[1+y '( y- 1)~,'( ~,.' ~»') -']

.,'= ..'[I-y- (y-1),.'(,.'- ..') '];

(5a)

(51)

(BPIBo),(Bp/»). (»/Bp). (so/»), =y '(y-1).

The poles of the spectral correlation functions indicate that the Brillouin spectral lines due to first
and second sound should occur at aug and aug, respectively. The positions of these lines shift with

pressure because u, and u, depend on pressure through y(P). For y =1, which amounts to ignoring the

thermal-expansion coefficient, X~~ "(k, &u)/~ has poles at the first-sound velocity, y "(k, &u)/&u has
poles at the second-sound velocity, and X~,"(k, cu)/~ vanishes, reflecting a complete decoupling be-
tgreen pressure and temperature fluctuati. ons. Since the coupling between light and the entropy fluctua-
tion is negligibly small [because (Be/Bv) ~

= 0], we will concentrate mainly on the light scattered from
the density fluctuation.

The relative intensities I, and I, of the BriQouin components due to first and second sound, respec-
tively, can easily be obtained from the density-density correlation function by finding the residues of

yzz "(%, v)/(u at the poles at +uP and +uP. I, and I, are found to be

I, =(kBT)(B~/Bp), 'myu„'(u, '-u, ') '((y 'u»'-u»')+u„'y '(y-1)[u„'y '(u»'-u»') '+(y-2) ']] (Va)

u» and u» are the respective velocities of first and second sound at normal pressure and Pr is the iso-
thermal bulk modulus. In deriving the above expressions for response functions, we have not ignored
the coefficient of thermal expansion in that we have retained the thermodynamical derivatives such as
(Bp/BT), and (Bo/BP) ~. This leads to a coupling between first- and second-sound velocities, as can be
seen from Eqs. (5a) and (5b). The product involving these thermodynamical derivatives can be ex-
pressed in terms of u, o', u2O', and y using the relation

I,=(ABT)(Be/Bp),+yu„'(u, '-u, ') '{y '(y-l)u„'[u»'(u»'-u»') '-(y-2) ']j.
If C~ is equal to C„, then the intensity of Brillouin components at the second-sound velocity, I„vanish-
es, which is an expected result. To see how I, and I, depend on pressure we have to determine the

pressure dependence of y. In order to do this we fall back on Eq. (5a). The use of a few simple ther-
modynamical relations leads to

y(P) =[(Bp/BP)ru, '(P)+u»'(u»'-u20') ']/[1+u20'(~„'-u»') '].
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FIG. 1. The px'essux'8 dependence of the x'Rtio of the
specific heats, Cz/Cv, Bt different temperatures.
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FIG. 2. The pressux'8 dependence of the raMo of the
intensities of Bxillouin spectral components due to sec-
ond sound Rnd fix'st sound Rt df.ffex'ent texIlpex'8tux'es.

The density of llquld He as a function of plea-
sure has been measured by Keesom and Kee-
aom " Using their data we have calcula. ted the
values of (Bp/BP)r for different pressures and
temperatures The .values of the velocity of first
sound under different pressures and tempera-
tures are taken from the data of Atkins and Sta-
sior." Taking the values of u,0 =235 m/sec and
&,0 = 20.1 m/sec at 1.5'K under saturated vapor
pressure, we have calculated y aa a function of
pressure at different tempera%res. This j.a
shown in Fig. 1. There is a sudden drop in y(P)
at 1.9'K under about 10 atm pressure. This is
probably due to the shift of X tempera, ture" in
the vicinity of 1.9 K under such pressure The.
intensity of Brillouin components due to first
sound is found to remain more or less constant
over the pressure range 0-20 atm and between
temperatures of 1.25 and 1.90'K, at most 2%
higher than the value at saturated vapor pres-
sure. On the other hand, there is a marked in-
ex'ease in I, with pressure between 1.25 and
1.9'K. In Fig. 2 we have plotted the ratio I,/I,
against pressux e on a semilogarithmic scale.
As can be seen from this figure, there is an ap-
preciable increase in this ratio with pressure.
The value of I,/I, at 1.9'K under 10 atm pressure
is about 0.14 (=—,'), and at 1.8'K under 15 atm
pressure it is about 0.12 (=—', ). Thi~ prompts us
to predict the most favorable conditions for ob-
serving the second-sound Brillouin components
to be T = 1.8-1.9'K and P = 10-15 atm. The re-
sults obtained at 1.9'K under 10-15 atm pressure
should be viewed with caution because the A, tem-
perature may lie very close to 1.9'K, in which

a, = 2II'f 'P 'u, '[-', q + &,+ (y-1)K/C~ j, (9)

where f is the frequency of the sound wave, Ii and
g, are the respective coefficients of the nox mal
and second viscosities, and K is the thermal ki-
netic eoefflelent. Dransfeld» Newell» and Silks
have measured a, as a function of pressure and
temperature for 14.4-Mc/sec sound waves. In
the hydrodynamic regime of temperature (1-2'K)
the major contribution to a, comes from the sec-
oIld vlscoslty g 2q Rlld above 1.4 K II1 is sI11Rll
and practically independent of pressure. This in-
dlea'tes that the width of the fix'st-sound Brlllouin
peRks sllollM Ilo't dlvel'ge betweell l. 5 Rnd 1.9 K
under 10-20 atm pressure. To the author' s
knowledge no experimental data are available for
the attentuation of second sound (n, ) at different
pr essurea. A detailed theoretical analysis due
to Khalatnikov" shows that the major contribution

case the hydrodynamical approach in calculating
the speetx'al correlation functions is invalidated.

In the preceding calculations we have not in-
cluded the dissipative terms in the hydrodynami-
cal equations. This led to 5-function-type poles
of the response functions. Inclusion of dissipa-
tive terms mill displace the poles of the reso-
nance function from the real axis and mill give
risc to finite widths of the spectral components'~
which may again vary with pressure and tempera-
ture. 7his can be demonstrated by calculating
the attenuation eoeffieients of first and second
sound in He II under pressure since the bnewidth
is directly related to the attenuation eoeffieients.
The attenuation coefficient a, for fix'st sound in
He II under pressure is given by



VOLUME 26, NUMBER 26 28 JvNs 1971

to o., comes from the thermal conductivity and
that a, is exceedingly small above 1.5'K. In the
light of the above discussion we do not feel that
there will be any anomalously large broadening
of the Brillouin spectral components in the hy-
drodynamic regime. A word of caution must be
added on this point, namely, that in the Brillouin-
light-scattering experiments one is dealing with
high-frequency sound waves and the widths of
the Brillouin spectral components are already
quite large because of the frequency effect. Fi-
nally, we would like to make a few comments re-
garding the resolution of the Brillouin spectral
components in He II under pressure. The appli-
cation of pressure should increase the resolution
of the first-sound peaks for the following two
reasons: Firstly, pressure increases the veloc-
ity of first sound considerably, which will push
first-sound Brillouin components away from the
incident laser frequency, making them easy to
resolve. Secondly, since the attenuation of first
sound decreases with pressure, the first-sound
Brillouin components should become sharper at
higher pressures. The situation is very differ-
ent for the second-sound Brillouin spectrum.
The application of pressure decreases the sec-
ond-sound velocity" and this will make the reso-
lution of Brillouin components comparatively dif-
ficult at higher pressures. Qne may think that
the resolution can be increased considerably be-
low 1'K where the velocity of the second sound
increases sharply. " Unfortunately, the attenua-
tion of second sound is so large below 1'K that it
may not be at all possible to resolve the second-
sound Brillouin components experimentally.
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