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Experimental measurements and numerical simulation show that relativistic electron
beams propagating in a drift tube with a net current less than the Alfvdn critical current
assume an axially dependent equilibrium. The equilibrium of a 40-kA, 3-MeV electron
beam propagating in air at 22.5 Torr has been studied analytically, numerically, and
experimentally. Reasonable agreement among the results of the three approaches has
been found.

Yoshikawa' has recently proposed an axially
uniform, force-free equilibrium for high-inten-
sity electron beams. Although it is conceivable
that one could produce such a beam in the labora-
tory, experiments with the propagation of high-
current electron beams at Sandia Laboratories
indicate that the (quasi) equilibria assumed by
relativistic beams are in general z dependent.
Thus, as an alternative to the axially uniform
equilibria of Yoshikawa, or that of Hammer and

Rostoker, ' we propose an axially varying equi-
librium.

.Figure 1 shows experimental current-density
profiles for a 3-Mev electron beam propagating
in air at a pressure of 22.5 Torr. The profiles
were obtained with an array of Faraday cups
which were located radially at 0, 1, 2, and 3.25
in. and azimuthally at 0', 90', 180', and 270'.'
Measurements taken at a given time and axial po-
sition were averaged azimuthally. The primary
current in the diode was measured to be -45 kA
maximum and the net current in the drift tube
was -22.5 kA. Two pinches (regions of radial
constriction) are visible.

We consider the problem of a beam of elec-
trons injected through a conducting plane. The
beam is assumed to be instantaneously charge
neutralized, and all electric fields are neglected.
Hence, we are considering just the Alfven prob-
lem, ' except that we have done it self-consistent-
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FIG. 3. Experimental profiles of constant current
density (A/em~) during the time of maximum pinching
for a 3-MeV beam propagating in a drift tube filled
with air at 22.5 Torr. The primary current in the
drift tube was 40 kA and the net current was 22.5

kA.

ly. We have approached- this problem in two

ways: the relativistic, temperature-dependent
fluid equations of Toepfer, ' and a computer simu-
lation technique.

The fluid approach is complicated by difficul-
ties with the higher-moment equations, and we
will present only the zero-temperature case (as
done by Yoshikawa).
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Here e and m are, respectively, the electron
charge and mass, v =(v„, 0, v, ) is the velocity,
n is the density, and Be is the magnetic field.
Since the velocity at the injection plane (z =0) is
(0, 0, v,), we musthave B„=B,=vs=0. Alsoy
=(l-v, '/c') '~' will be a constant.

If we consider the streamline R(z), it is easily
shown that the total current I inside this stream-
line is independent of z. Thus along R(z) we have
Be= p, ,I/2'R; and from(3),

dv, /dR =e p, I/2mmyR. (5)

Since v, =u, [1+R'(z)'] '", where R'(z) =dR/dz,
the equation for the streamline is found to be

R'(z) =-([2(v/y) ln(R/R, )+1j '-1)'",

With the use of mks units and cylindrical coor-
dinates r, 8, snd z (where we assume all quanti-
ties independent of 8), the fluid equations take
the form

8 1 8—(nv, )+——(rnv„) =0,
Bz X Bf

Method of determination

Experiment
Analytic theory, Eq. (6)
Computer simulation P'& -—0)
Computer simulation (To ——Te»)

1.5
1.7
1.8
1.4

The experimental value here is based on the spa-
tial current profiles of Fig. 1. The analytic val-
ue was obtained by solving Eq. (6) numerically.
The simulation values for a were obtained by di-
viding the z value of the first pinch by the maxi-
mum beam radius. In the simulation results, T,

of course automatically included. ) Details of the
method will be given elsewhere. ' The basic re-
sult is that for v/y~ 1, the system soon settles
into a z-dependent steady state. For v/y ~ 1,
i.e., the current exceeding the Alfven critical
current, part of the beam is reflected back out of
the system at z =0. (See Ref. 4, Fig. 2.)

A picture of the simulation results for v/y =0.2
is shown in Fig. 2. The z =0 density profile was
taken to be uniform out to the beam edge, a rough
approximation to the profile of Fig. 1. For com-
parison with experiment, we define a parameter
a = pinch-to-pinch distance divided by the maxi-
mum beam diameter. The results for v/y=0. 2
are as follows:

where R, =R(z =0) and v is the Budker parameter,

v=(e'/4vs, mc') j n(z =0)2srdr.

Equation (6) applies only to streamlines for which
R(z) is single valued; roughly, these are stream-
lines for which v/y ~ l.

Physically, the assumption of zero tempera-
ture made in deriving Eq. (6) cannotbe correct
since even if all particles are injected with veloc-
ity(0, 0, v, ), they will acquire a spread inv„and
u, as the beam pinches (although v„'+U,' will re-
main constant for each particle). We cannot ex-
pect Eq. (6) to describe details of a pinch region
with any accuracy, but we find that Eq. (6) does
give a reasonable approximation to the location
of the first pinch. To understand the role of tem-
perature in the pinch region, one refers to the
work of gennette'7 or to the more recent work of
Toepf etr. '

The computer simulation technique consisted of
injecting a stream of simulation electrons at z
=0 and following their motion using the relativis-
tic single-particle equations, the field Be being
determined by Eq. (4). (Temperature effects are
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FIG. 2. Computer-obtained z-dependent equQibrium
for the case where v/y=0. 2. Each dot represents a
simulation electron; the density of dots at a given po-
sition (r,z) is proportional to the product of ~ and the
actual electron density for (a) Tp Os (k)) +Q +earp.
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FIG, 3. Radial distribution of primary current in the
region of maximum pinching fox a 3-MeV electron
beam with net v/y=0. 2. The three data points indicate
the results obtained experimentally. The solid curve
was calculated from the finite-temperature fluid model
with 7' =420 keV and was fitted to the data at x=0. The
dashed and dotted lines were obtained from the numeri-
cal simulation for beams with T& = 0 and T& -—T~», re-
sp«tivs&y The v«s of i inj««d a«=o was 9.2 kA/
cm .

able agreement with experiment. The "finite-
temperature-model" curve is based on the axial-
ly uniform analytic equilibria of Ref. 5 assum-
ing a net v/y of 0.2 and a beam temperature of
420 keV. The justification for applying Rn axial-
ly uniform theory in a region of maximum pinch-
ing is that all Quid quantities in such a region
Rx'e slowly VRx'y1ng ln z. The fRct thRt the analy-
tic curve passes almost exactly through the three
experimental points indicates that some aspects
of bealYl behRvlox' cRD be desex'lbed by axially uni-
form theories. The theory of Bennett might also
be expected to-apply in a pinch region; however,
the Bennett profile did not fit the data at large
I'Rdll.

In summary, experimental observations on rel-
ativistic electron beams force one to look for ax-
ially dependent theoretical equilibria. We have
found such equilibria and obtained reasonable
quantitative agreement with experiment.

The authors thank Professor ¹ Rostokex for
several helpful discussions, and F. 0. Lane for
programming assistance.

refers to the spread in v„and ve given to the par-
ticles at the z =0 injection plane. The Tp Te p

case was obtained by giving the particles a Gaus-
sian d18tx'1butlon ln s„and a ve of about 0, such
that the width of the Gaussian corresponded to
the estimated scattering of a 3-MeV electron in
the 0.005-in. -thick titanium anode foil. '

Figure 3 compares the experimental (3-MeV,
22. 5-Torr), computer simulation, and the analy-
tic results for the radial profile of the current
density in a region of maximum pinching. The
computer-code results for TO=0 (a monoenerget-
ic beam injected normally at z =0) is too peaked
at the center, but the Tp T p case is in reason-

*Work supported by the U. S. Atomic Energy Com-
mission.

~S. Yoshikawa, Phys. Bev. Lett. 26, 295 (1971).
20. A, Hammer and N, Rostoker, Phys. Fluids 13,

1831 (1970).
J. G. Kelly, Bull. Amer. Phys. Soc. 15, 1308 (1970).

'H. Alfv5n, Phys. Rev. 55, 425 (1999).
A. J. Toepfer, Phys. Rev. A 2, 1444 (1971).

6W. H. Bennett, Phys. Bev. 45, 890 (1934).
'W. H. Bennett, Phys. Bev. 98, 1984 (1955).
8J. W. Poukey, to be published.
G. Knop and W. Paul, in AEPha-, Beta-, -and Cam-

me-Buy Spectroscopy, edited by K. Siegbahn (North-
Holland, Amsterdam, 1966), Vol. 1, pp. 4-7.


