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A model of high-energy scattering is developed which incorporates assumed analytic
properties. The approximations involved in the phenomenological fits of Orear and
Krisch are discussed. An improved formula is suggested which has correct analytic
properties and reproduces the Orear and Krisch fits in appropriate limits.

At present there is no general theory available
for explaining high-energy hadron collision cross
sections over the entire angular range. For pro-
ton-proton scattering there exist at least two ex-
cellent phenomenological fits, ' the Orear formu-
la

Sdo/dQ=Ae (~"" ' '

and the Krisch' formula

do/dt =g,A,. exp(-o. , p'p')

=Q,.A, exp(- u, lf/s),

with Ax=90, 22=0.74, A;3=0.0029, o'y 10~
=3.45, and n, =l.45. Here s, I;,

' and ~ are the
usual Mandelstam variables, 0 is the c.m. scat-
tering angle, and p is the c.m. momentum. The
Orear fit is good for large angles around 8 =90,
but deviates substantially for small angles. A
single exponentia14 in t fits the data for small t,
i.e., for 8 close to 0, and is quite bad for larger
angles. It is worth mentioning that a fit which
combines both the Krisch and Orear type of ex-

ponentials,

do/dQ=A exp(np ~+ pp, '),

had been proposed by Narayan and Sarma' as
early as 1964.

So far, no attempts have been made to propose
phenomenological formulas which have the cor-
rect analytic properties of scattering cross sec-
tions. Since the analytic properties are due to
the nature of forces responsible for scattering
of hadrons, a formula satisfying the require-
ments of analyticity could provide better repre-
sentations for scattering data. This was first
pointed out by Cutkosky and Deo" and Cutkosky'
and also explicitly demonstrated by them' and
Chou. ' They have been able to construct poly-
nomial expansions where each term has the as-
sumed analytic property and more importantly,
the series converges very rapidly. We propose
to extend some of these ideas to the high-energy
scattering for all angles in the diffraction region.
At these energies, resonances have ceased to
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contribute appreciably so that all relevant func-
tions and the discontinuities are fairly smooth
functions of chosen variables.

We ignore complications due to spin and con-
sider equal-mass hadron scattering. " A func-
tion f(s, f) is chosen which is proportional to the
differential scattering cross section do/dQ. For
equal-mass scattering f(s, t) =f(s, u), i.e., the
differential scattering cross section is symmet-
rical about 0 = 90'. This enables one to treat
f(s, t) conveniently as a function of cos'|I rather
than cos8.

f(s, t), being proportional to do'/dQ, has the
same analytic properties as the scattering am-
plitude A(s, t) for a given s, since sdo/dQ = [A(s,
t) I'. So we assume f(s, t) to be an analytic func-
tion in the cut coso plane with cuts from -is to
-x,

& and@,
&

to ~. There are also a large num-
ber of inelastic cuts, the nearest one starting
from +x;

Cutkosky and Deo' and Ciulli" mapped the sym-
metrical cut plane into the inside of an ellipse or
a region enclosed by two circles. Unfortunately
at high energies the cuts come close to +1 and
the ellipse shrinks onto the physical region mak-
ing a Legendre expansion unreliable.

Cutkosky" has developed a statistical model of
high-energy scattering processes which also in-
corporates assumed analytic properties. He has
concluded that the absence of Ericson fluctua-
tions may imply a more extended domain of an-
alyticity than the small Lehmann ellipse so that
the partial-wave amplitudes are strongly corre-
lated to conform to analyticity requirements as
shown by phase-shift analysis. " Following up
this line of investigation, we propose to map the
entire cut plane into the inside of a parabola so
as to (i) effectively increase the region of analy-
ticity and (ii) hold the cuts away from the physi-
cal region.

Our attempt is not to find a curve with the best
fit to the experimental data but to suggest a sim-
ple analytic formula for a curve which would give
a very good fit to the experimental data. To this
end, we wish to expand the given function f(s, t)
in a series of classical orthogonal polynomials.
We assume that f(s, t) is square integrable, i.e.,

fr(g) IAs 5) I (4)

where $ = E(x) is a variable suitably constructed
and I"($) is the physical domain of f(s, $). The
expansion"

f(s, &) =[ ($) j"'Q„C„(s)P„(h)

converges in certain regions of the $ plane, m(g)
being the weight function corresponding to the
orthogonal polynomial P„($). When $ lies be-
tween -1 and +1, the orthogonal polynomials
could be the Legendre polynomials with ~($) =1;
the region of convergence is the largest unifocal
ellipse free from singularities. The essential
idea of Ref. 6 was to map the x plane such that
the entire cut plane was within the ellipse of con-
vergence in the $ plane. If, in a physical situa-
tion, the physical region extends from - to +,
the corresponding orthogonal polynomials suita-
ble for expansion are the Hermite polynomials
with co($) =exp(-$'), the region of convergence
being a strip around the real axis. The entire
region of analyticity should then be mapped into
the inside of the strip in the $ plane.

For the high-energy problem we have chosen
to consider here, the physical region will be con-
veniently formed so as to extend from zero to in-
finity. The weight function is then exp(-$) and
Laguerre polynomials I.„($) are the correspond-
ing classical polynomials suitable for expansion.
The region of convergence of the Laguerre-poly-
nomial expansion is a parabola with the origin
as focus. So we will obtain $ by suitable con-
formal mappings such that the entire cut cos6
plane is mapped into the inside of the parabola
in the $ plane. In such a case we expect

f(s, t) = exp( —g/2)Q„C„L„($) (6)

[( 2 x 2) 1/2 (x 2 1)1/2](x 2 1) 1/2 (s)

This is shown in Fig. 1(c). The physical region

to converge very rapidly. In the sense that no
region of analyticity is left out of the region of
convergence, the expansion (6) may also be con-
sidered optimal. Phenomenological fits suggest
very strongly that the gross features of high-en-
ergy scattering in the diffraction region are de-
scribed by a single term, in which event the
first term would provide an adequate represen-
tation of high-energy data. It is useful to intro-
duce t„and f;„ through the relations x,&=1+(,&/

2p' and x;„=1+ t;„/2p'. Figure 1(a) shows the
cut x = cos8 plane, and the simple mapping"

y = (1-x')/(x'„-1)

is shown in Fig. 1(b). The cuts now extend from
-I to -~and the physical region from 0 to y„,
where y =(p'/t, ~)(1+/,&/4p') ', tends to infinity
with p2.

Next we open out the elastic two-particle cut"
by the mapping
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Orear fits are obtained by ignoring the cut struc-
ture and using the variables of Eqs. (7) and (8),
respectively, in the exponential form.

We make no attempt to explain the dips ob-
served for larger t. To explain such features
higher terms in our expansion may have to be
taken, provided perhaps that resonances are not
responsible for the dips.

We are thankful to Professor R. E. Cutkosky
for pointing out the importance of the problem
and also for going through the manuscript.
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FIG. 1. The bold lines indicate the physical region
and the direction of the arrows show the elongation of
the physical region with energy. The dotted lines in

(e) and (d) are the inelastic cuts which shrink to the
real axis as energy increases.

der/df =A exp( —o.Z/2). (10)

It is easily checked that for Itl«0. 8 BeV ', Z
=ut/4P'f„; and for finite angles but high ener-
gies, Z-(P sin8)/t„. Thus our proposed formula
(10) is like exp(at) for very small values of t but
for large angles it reduced to the Orear formula,
exp[(-P sin8)/5], with 5 = n/2t„. Krisch and

extends from e =0 to co =&@„, where &o„=[x,&-(x,&'

-1.)'"](x '-1, ) '" tends to infinity as pt, &

"' for
large energy. The inelastic uts extend from
(u;„' =-1+i(x;„'-x„')"'(x„'-1)"' to -1+i~.

The inelastic cuts are then mapped conformally
to form the boundary of a parabola with the ori-
gin as the focus. The mapping is complicated.
However, as p'- ~ we have x;„'-x,p -0 and ~;„'
—-1, so that the inelastic cuts meet at —I + 0,
extending from (-1-i~) to (-1+i~). A simple
conformal transformation,

Z =+[inv cosh(1+ &u) ]',

maps the analytic ~ plane into the interior of the
parabola with the origin as the focus as shown in
Fig. 1(d). The physical region lies on the real
axis from 0 to 2 „and Z „tends to infinity as
In(2p/f „"').

We therefore suggest to the experimentalists
to fit their high-energy data by the expression
embodying correct analyticity, namely, "
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