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To obtain (7) one takes the solution

of (13), inserts it in (11), and multiplies the re-
sult by 8'. The parameter v has to be purely
imaginary:

V= 2P, .

A particular case of this theorem has been ob-
tained by Dashen when co and c, only are nonzero
to start with.

We can now draw the main conclusions from
this theorem:

(1) If the CP-invariance-violating term which
is present in the weak interaction is due to a
semistrong or /and electromagnetic breaking
term belonging to a (3, 3*)(3*, 3) representation
of SU(3) SU(3), then p, W 0. This CP-invariance-
violating term is a pure singlet of SU(3). As a
consequence, if the weak-interaction Hamilton-
ian satisfies the rule I&I I= s, so should the CP-
invariance violating part. If octet dominance is
correct, then the CP-invariance violating part
should be dominated by the octet. We stress
again that this is true both for CP-invariance
violation originating from a semistrong interac-
tion as well as for a CP-invariance violation
originating from an electromagnetic interaction.
The crucial restriction is that the breaking term

belongs to a (3, 3*)@(3*,3) representation. This
would predict the equality of the r)'s characteriz-
ing the decay K~'-2p. In particular'

II)MI'= ln. - I' (16)

(2) This violation can be made as small as one
wants, as one can easily convince oneself on
specif ic examples.

(3) Using the freedom which is left of an arbi-
trary SU(3) rotation U= V which does not change
the trace in (6b), and thus the maximum, one
can write the most general H' as

Hg —CONO+ C8Q8+ C3Q3+ dDVO.

The physical interpretation of this form is as
follows: u, picks out that SU(3) representation
which is responsible for the existence of multi-
plets; u, is the semistrong breaking term; u„
the electromagnetic breaking; and d, [a singlet
of SU(3)], the CP-invariance violating part.

*Laboratoire associe au Centre National de la Re-
cherche Scientifique.

R. Dashen, Phys. Rev. D 3, 1879 (1971).
M. Gell-Mann, Phys. Rev. 126, 1067 (1962).
Recent experiments seem to favor this equality, as

preliminary results of CERN-Orsay and CERN-Aachen-
Torino collaborations show.
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We present a method of using mass dispersion relations for relating symmetry-break-
ing parameters in Lagrangians to breaking effects in states and deducing precise rela-
tions between physical S-matrix elements from operator algebras. We apply the method
with the canonical equal-time and light-cone operator structures of the gluon model to
deduce some SU(3) Q SU(3) symmetry-breaking effects. We find fz/f~ = 1.20, $ (0) = -0.7,
a 50Vo correction to the Callan-Treiman relation, and +8= [SU(3) breaking parameter)
= 0.14 Gev, and explain wby these values are completely consistent with ZxjZ„» 1.

The Gell-Mann chiral SU(3) SU(3) current algebra'

0(x,)[V,'(x), V, '(0)] = if'"' V, '(0) 04(X), etc. , (1)

implies many interesting low-energy theorems, a number of which [usually via partial conservation
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of axial-vector current (PCAC)] can be com-
pared with experiment. The agreement with ex-
periment is quite good and supports the validity
of Eqs. (1). The status of the conjectured corre-
sponding broken SU(3) Ie SU(3) symmetry of the
hadrons is much less clear. ' The axial charges
certainly do not give rise to a good symmetry of
the states but seemingly to a Goldstone-Nambu-
type symmetry. SU(3) symmetry, on the other
hand, is clearly reflected in the hadron-mass
spectrum. The precise nature of the symmetry-
breaking interactions, and the precise connec-
tion between the magnitudes of the symmetry-
breaking parameters in the Lagrangian and the
magnitudes of the symmetry-breaking effects in
the states, have remained, however, very ob-
scure. In this paper we will assume the validity
of the simplest possible chiral symmetry-break-
ing scheme and address ourselves to the problem
of effectively determining the consequent depar-

tures from symmetry for the states and the mag-
nitudes of the symmetry-breaking parameters.

We thus assume (3, 3*)S (3*,3) symmetry
breaking' (S'= scalar nonet, P'= pseudoscalar
nonet). We shall, in fact, be more specific, and
abstract some additional algebraic relations
from the gluon Lagrangian model, in which the
quark fields g interact via a neutral vector me-
son B„. The currents are then simply Dirac bi-
linears and we have the additional relations'

5(x,) l8'(x), P'(0) ] = id'"A, '(0) 5'(x), etc. (2)

Since it is, of course, presently out of the
question to solve the above model, we cannot di-
rectly deduce consequences for observable quan-
tities like physical matrix elements of the cur-
rents. Our approach will therefore be indirect.
We will abstract further formal properties from
the model: specifically, the light-cone (LC) op-
erator product expansions. '' For example,

P'(rex)S (- x) „0Bp(x )Q„d' 'p„...„&'(0)x x . x n + Bus (lnx )

xE„f"p. .„""'(0)x"1 "x"+(x ')d'"g„p„. (0)x~i. ~ .x~..1 n

c/W2= n, /&an, = -O. 2. (4)

Our method involves the use of mass disper-
sion relations" to provide algebraic relations be-
tween the values of amplitudes at zero mass (giv-
en by equal-time commutation relations), at
physical points (given by experiment), and at

=8~&„' =(2/~3(W2n, +n,)P' -=(2/~3~~',
D» =s"A„» =(2/~3(v 2n; —,'n, )P» -=(2/~3m»P

There is, by now, considerable support for the va-
lidity of such expansions and, equally important,
the following properties which we assume that
they possess: (A) The asymptotic behaviors (6),
etc. , set in quite fast, completely dominating for
x '-q') 2.5 GeV'. (B) They display a smooth
threshold behavior in that the Fourier transforms
of the coefficients of the LC singularities vanish
rapidly near the boundaries of the physical re-
gion. A review of the experimental evidence for
these properties is given in Ref. 6.

Before using this formalism, let us recall the
Fubini-Furlan' dispersive approach to the calcu-
lation of corrections to SU(3). We have previous-
ly shown, for example, how, in the context of
the above gluon-model relations, it leads to the
result"

I

mass =2.5 GeV' (given by the LC expansions).
Since use of the smooth-threshold assumption
relates the LC behavior back to the equal-time
behavior, we end up with coupled equations for
various physical parameters which can be solved
simultaneously. This is how our algebraic equa-
tions for operators lead to algebraic equations
for physical parameters and how the (exact) op-
erator symmetry embodied in Eqs. (1)-(6) leads
to (broken) symmetry for the physical states. "

In this paper we will apply our methods to dis-
cuss the vacuum-one-pseudoscalar-meson ma-
trix elements of A.„' and P'. We will ignore
terms of order n, ', but will not assume that the
order n, terms are small compared to the order
1 terms. We keep all orders of 0.0. We define
the usual pion- and kaon-decay constants f, and

f» and "renormalization" constants

(o IP' l
~') =z., &o IP I

A') =z .

We always label on- or off-shell pions (kaons)
with momentum p& (k&). On shell, p2=m, 2= p.',
A' = m~' = m'. The divergence equations

(6a)

(6b)
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immediately give the relations

~2f„=(2/~3(W2o. o+ a3)Z„m f» = (2/~3(W2no-2 o'3)Z».

Thus w'lth (4), we have (p'/m')f, /f» = 0.77Z, /Z». We will see that our formalism provides an elegant
understanding of this large difference between f, /f» and Z, /Z».

For use below, we parametrize matrix elements of some other operators occurring in (3), etc.:
(Ojiyy„y, (-,'~')(i~, )y j@=A,(k„k,- ,'m'g„-, ),

(Ol Py3(2A. )EEgjÃ) =B»kz, 42= &2+ 2igBE.

(8)

(10)

(2j Vq jÃ) =2 ' [(kq+pq)f (q )+(kp-pq)f (q ) j.

We have taken (8) to be traceless because, according to the field equations, the trace is higher order
in 0, Likewise, to the order of interest, we can take A. ~=RE=A and B,=B~=B, where A and B„
are defined as above with & E.

We consider first the vertex function (k = p+q)

A(p', q') =-i fdxe'1~ '&'""(Oj TP' (-,'x) m (--'x) j&),

where & =&'V„=-iv 3+38 =-ie $ . The zero-mass theorem A(m', 0) =iZ follows immediately.
The residue of the pion pole in A.(p', q') can be simply expressed in terms of the E» form factors de-
fined by

Writing the matrix element of (3) as

(Ojz" (-,'x)x (--,'x) j~)-(k s)( -')f,(x k)+(k s)'(im')f, (x k)+(x-')f, ( k),

it follows as usual', that

q2 p2 q2 p2 2 1
A &2~~ ~l

d3IE, (31)
( k)2

+ dqE2('g) (- k)2- +j~ d31E3(31)
( g)2$

q 2 flxccl
q-p + 31k q—p+

where the E,(q) are proportional to the Fourier transforms of the f,(A). The normalizations of the
E,( 1) 3are conveniently fixed by considering the Bjorken" limit p, -~, p fixed.

We thus learn from (13) that

2

A(p', 0) 22
= -i&3(f»+A)-,' --(f»+A) +(2/~362Z»,

(12)

(13)

where we have invoked the smooth-threshold assumption' in order to neglect, e.g. , fd3IE, (r1)rl com-
pared with fdqE;(g).

%e have now derived enough results to use the mass dispersion relation

(, , 1 t» ImA(z, q') 1 A(z, q')

Cp

and the relation

(15)

0 = ~ 'f dz ImA(z, q') + (22 i) 'f dz A(z, q') (16)

effectively, where A =2.5 GeV' and c~ is the circular contour Izl =A. We evaluate (15) at p' = m', q'= 0.
The result (14) [and Assumption (A)] can be used to evaluate the contour integrals, and (11) can be used
to evaluate the pion-pole contributions to the (0-A) integrals. The difference ImA of ImA and its pion-
pole contribution should not oscillate in the short integration range 9p, cz A, and so the mean-value
theorem can be used to conclude that

f, dz 1~(z, 0)iz =M 'f, dz 1m'(z, 0), 0-Z'- A.

From previous experience, ' we expect that M = 1.5. Putting all this into (15) and (16), we obtain the
relation

M'- p,
2 m 2E2Z gZ»=Z2f+(0) M, , -e3 (f»+A) 1-2(, ,)

—
~3(~ 2)

(18a)
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In exactly the same way, we can obtain a second relation by taking the K, rather than the m, off
shell and considering (Ol TP 5) lE) instead of (10). We get, in this way,

LlP-m 2E EZ
v 3M'M'- p.

(18b)

In deriving Eqs. (18), we used zero-mass theorems (q=0, p'=m' or k'=g') obtained from (OlTPB "V„
x ln or K). If, instead, we consider (OITB "A„X)l& or K), we get zero-mass theorems at p=0 (q'=m')
or k =0 (q'=y, '). Using these theorems, our method leads to the new relations

m'
2 2 sm 7 PE 262 Zg

~, Zs=f, (m' p,')-f,(m')+, ,f (m') + ~ e,e, f» 1+, +A 1+—
nfl —P

(19s,)

Z =f ( '-p) f (p')+, ,f (p')+~em f 1+, -A1 (19b)

gee consider next the vertex function

if-d e'&' '& ""('Ol 7'&'(-', )z&„'(--'. z) IK) =(k+ p)„f+(p', q')+(k-p) „f (p', q'). (20)

The zero-mass theorem is f+(0, m') +f (0, m') =fl, and the asymptotic behavior, determined as above,
is easily found to be

f+(p, m ) +f (p, m') ~s „- p 2(2@2/v 3)[2Zs-(2/W3)fs(e2+ez)-3B].

The mass-dispersion relations, used as above, now give

fs =f,[f+(m ) +f (m') ]-(2e2/W311P) [2Z E-(2/~3)f s(c, + e z) 3fi]

The relation obtained by taking the x, rather than the K, off shell is

f.=fx[f.(L ')-f-(L ')]-(2~&/~~')[2Z, -(2/W&f. (e, +~s)-»].

(21)

(22a)

(22b)

Using the relations (4) and (7) and the experimental values fs/f„f, (0) =1.28 and f„=0.96', , our re-
sults (18), (19), and (22) constitute six equations in the six unknowns f+(0), e(0) —=f (0)/f, (0), f+(m')
+f (m'), ot„A, and 8 The .solution is

f+(o) —=o 94

$(0) =--0.7,

f,(m')+f (m') =—1.45f /f„
as —= -140 MeV.

(23a)

(23b)

(23c)

(23d)

These values were obtained using the usual value M' =1.5 but they are quite insensitive to M' in the
range 1.5 ~~M ~~ 2.

Let us comment on our results. " Eq. (23a) is in good agreement with the Ademollo-Gatto theorem.
Eq. (23b) is in good agreement with the recent K» data. Note that it was obtained without making any
assumptions about the q' dependence of the form factors. Eq. (23c) represents a 50/o violation of the
Callan-Treiman relation, but in the opposite direction from what we previously expected. " Eq. (23d)
is, as expected, a small SU(3)-nonconserving parameter. The chiral SU(2) S SU(2) symmetry breaking
is thus e, =W2o., +o., =580 MeV. We see that our formalism leads to a completely consistent picture of
SU(3) NI SU(3) symmetry breaking.

*Alfred P. Sloan Foundation Fellow.
(Work supported in part by funds from the National Science Foundation under Grant No. GP-25609.
(Work supported in part by funds from the National Science Foundation under Grant No. GU-8186.
For convenience we exhibit the local commutation relations although we only use them in their integrated form.
S. Weinberg, in Pvoceedings of the Fourteenth InternationaL Conference on High Energy Physics, Vienna, Aus-

t~a, September 2968, edited by J. Prentki and J. Steinberger (CERN Scientific Information Service, Geneva,
Switzerland, 1968).
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A model of high-energy scattering is developed which incorporates assumed analytic
properties. The approximations involved in the phenomenological fits of Orear and
Krisch are discussed. An improved formula is suggested which has correct analytic
properties and reproduces the Orear and Krisch fits in appropriate limits.

At present there is no general theory available
for explaining high-energy hadron collision cross
sections over the entire angular range. For pro-
ton-proton scattering there exist at least two ex-
cellent phenomenological fits, ' the Orear formu-
la

Sdo/dQ=Ae (~"" ' '

and the Krisch' formula

do/dt =g,A,. exp(-o. , p'p')

=Q,.A, exp(- u, lf/s),

with Ax=90, 22=0.74, A;3=0.0029, o'y 10~
=3.45, and n, =l.45. Here s, I;,

' and ~ are the
usual Mandelstam variables, 0 is the c.m. scat-
tering angle, and p is the c.m. momentum. The
Orear fit is good for large angles around 8 =90,
but deviates substantially for small angles. A
single exponentia14 in t fits the data for small t,
i.e., for 8 close to 0, and is quite bad for larger
angles. It is worth mentioning that a fit which
combines both the Krisch and Orear type of ex-

ponentials,

do/dQ=A exp(np ~+ pp, '),

had been proposed by Narayan and Sarma' as
early as 1964.

So far, no attempts have been made to propose
phenomenological formulas which have the cor-
rect analytic properties of scattering cross sec-
tions. Since the analytic properties are due to
the nature of forces responsible for scattering
of hadrons, a formula satisfying the require-
ments of analyticity could provide better repre-
sentations for scattering data. This was first
pointed out by Cutkosky and Deo" and Cutkosky'
and also explicitly demonstrated by them' and
Chou. ' They have been able to construct poly-
nomial expansions where each term has the as-
sumed analytic property and more importantly,
the series converges very rapidly. We propose
to extend some of these ideas to the high-energy
scattering for all angles in the diffraction region.
At these energies, resonances have ceased to


