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e note that if Vpg > wp, the exact N(0)VK(g)—1
—N(0)V In(T/T,), whereas due to the assumption of a
delta-function interaction in the Gor’kov theory the
K(g) we introduced does not have this property. Hence
the true g, (¢, B) approaches unity for large » and &,
and the sum and integral in Eq. (9) are convergent.
The rearrangement of terms is then valid. The re-

arrangement that was used here leads to convergence
before the part K(g) for vzq= wp becomes important.

2ye should point out that b has temperature depen-
dence through the parameter a=7%Zvy/47kT. Hence for
€= 1, constant b is not the same as constant field B.
However, because of the slowly varying nature of the
magnetization curve, this adjustment is small under
most circumstances.
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Rigorous bounds for the density of electronic states are given for an idealized model
of a group-~IV semiconductor based on the tight-binding method. These include inner
bounds which define a minimum gap in the density of states. The importance of this de~
velopment lies in its independence of periodicity. It applies not only to crystalline struc-
tures made up of tetrahedral bonds but also the random tetrahedral network which re-
cent studies have suggested for amorphous Si and Ge.

Recent experiments’'? have shown that amor-
phous Si and Ge appear to have a gap in the elec-
tronic density of states rather similar to that
found in the corresponding diamond cubic crys-
tals. This is a surprising result in view of the
inevitable high degree of structural disorder,
whatever the detailed structure of the amorphous
phase is assumed to be. Studies of the radial
distribution function3® have in fact suggested a
random tetvahedval network model for such sol-
ids. It seems that infinite networks can be con-
structed such that nearest neighbors are in per-
fect tetrahedral coordination (apart from small
deviations of bond lengths and angles from ideal
values) and yet the distribution of further neigh-
bors is highly disordered. Amorphous semicon-
ductors as prepared in the laboratory are thus
considered to have such a perfectly tetrahedrally
bonded structure with a distribution of voids® or
other defects dependent on the preparation.

The occurrence of a band gap in such a system
has stimulated widespread theoretical interest
but most rigorous results in this area®” have so
far been obtained for models in which disorder is
imposed on a basic periodic system. The rele-
vance of such models to the amorphous semicon-
ductor problem is at best oblique. Here we shall
address ourselves to the problem as it stands
without using periodicity in any way. A rather
idealized tight-binding formulation of the problem
will be used, but as far as the structure is con-

cerned, we use only the assumed tetrahedral co-
ordination of nearest neighbors, so that the re-
sults obtained apply to diamond, wurtzite, and
related crystal structures and also the ideal ran-
dom-network model for amorphous phases. We
shall show that this model indeed entails a gap
for all such structures.

We assume a Hamiltonian of the form

H=§V1|¢i><¢,~|+§Vz|<ﬂk><<ﬂzl- (1)

The functions ¢ may be visualized as directed
hybridized orbitals of the familiar sp® type. The
first summation is over pairs of different orbit-
als i and j associated with the same atom. There
are of course four per atom and they are as-
sumed to be directed toward the nearest neigh-
bors. The second summation is over pairs of
orbitals belonging to nearest neighbors and as-
sociated with the same bond (e.g., 1,1’ in Fig. 1).
To keep things as simple as possible, we treat
these orbitals as orthogonal as is commonly done
in such models.

Schriédinger’s equation gives

(H-E)}=0 (2)

for an eigenstate of the Hamiltonian, assumed to
be expandable in terms of ¢;. A zero density of
states at E is to be deduced if either (2) has no
solution or, in the limit of an infinite system,
the eigenstate ¢ cannot be normalized (i.e., it di-
verges at infinity). Let us then assume the ex-
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FIG. 1. The orbitals 1-4 whose coefficients in a tight
binding expansion are the elements of the vector «.
The coefficients of 1’ ~4’ form the vector v.

istence of an eigenstate ¢ at energy E and exam-
ine its properties. To do so we first project out
that part of Eq. (1) which involves orbitals around
a given atom.

Let us label 1-4 the bonds associated with a
given atom (Fig. 1). The coefficients of the cor-
responding orbitals ¢; of that atom in the expan-
sion of ¥ may be considered as a column vector
u. The coefficients of the orbitals with which
they overlap form a second vector v. According
to Egs. (1) and (2),

EjMij i==Vavy, (3)
where
-E, i=j
. = . 4
M‘J(E) {‘/71’ i#:] ( )

This matrix has eigenvalues
A, =3V,-E, A,=-V,~E, (5

Suppose that neither eigenvalue has modulus
greater than |V,],

max x| <[V,]. (6)
Then

[V llvl<{max x|} ],
and

lol<xlul, (7)

where 0<x <1 and |u|=(2J;%,%)'2. It remains to
be shown that such a relation cannot be sustained
at every site without a divergence at infinity.
Define
A = lvP=lu 2 (8)

Such a quantity can be defined at every site and
we indicate this with a site index j in parenthesis.
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Let A;(j) be summed over some finite cluster of
atoms. From Eq. (7)

0> (=Xl > S a5, (9)

However, the quantities A;(j) cancel in pairs as-
sociated with given bonds within the interior of
the cluster; hence we obtain a result analogous
to Green’s theorem

surface bonds

‘Z;Ai(j)= Ay(7)

4

and hence
surface atoms

IE_Ai(j)l< E

J

[u(5)P(1 +x2). (10)

A surface atom is one with at least one bond not
connected to an atom in the cluster. Suppose
that we expand the cluster by the addition of suc-
cessive layers, labeled n, such that all the sur-
face bonds at one step are interior bonds at the
next. Let the number of atoms in the cluster af-
ter n steps be 91,. Define the normalization func-
tion

nth cluster

S,=9t, lu(j) 2.
i

Then the above equations and inequalities give

Spag, Ty 1+x2
S, M., 242

(11)

It is easily shown that the layers can be added to
the cluster in such a way that the ratio of 9’s
tends to unity as » tends to infinity (essentially
because the ratio of surface to volume can be
made to tend to zero). In that case the left-hand
side of this inequality has a lower boud at in-
finity which is greater than unity since O<x <1,
Therefore such a state as we are considering
cannot be normalized and the condition (6) de-
fines a range of energies such that the density
of states is zero, It may be established simi-
larly that

min|x;|> |V, (12)

also defines forbidden regions of energy. Figure
2 shows all the resulting bounds on the density

of states, for all values of V,/|V,|. Except for
the case |V,/V,| =3 there is always a gap in the
density of states. Is there always at least one al-
lowed state on either side of this gap? The an-
swer is yes, as we have demonstrated elsewhere®
the existence of two particular states (“bonding

s state,” “antibonding p state,” respectively)
which indeed must lie on different sides of the
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FIG. 2. Bounds on the density of states. E’' =E/
1v,l, y=v,/lv,l. Shaded regions are forbidden, un-
shaded allowed. The heavily shaded region is the re-
gion to which the inequality (6) applies.

gap.
Our conclusion is that for such an idealized

model (which we do not believe to be oversim-
plified to the point of being irrelevant to real
physical systems) the existence of the gap is not
dependent on periodicity of the structure. Note
that the results are not compatible with the exis-
tence of localized states throughout the gap, as
is often postulated, although these would presum-
ably be introduced by defects and/or the slight
deviations of bond configurations from the ideal
values here assumed.

7, M. Donovan and W. E. Spicer, Phys. Rev. Lett.
21, 1572 (1968).

T. M. Donovan, W. E. Spicer, and J. M. Bennett,
Phys. Rev. Lett. 22, 1058 (1969).

3S. C. Moss and J. F. Graczyk, Phys. Rev. Lett. 23,
1167 (1969).

‘D. E. Polk, J. Non-Cryst. Solids, 5, 365 (1971).

’N. J. Shevchik, Bull. Amer. Phys. Soc. 16, 347
(1971), and to be published.

M. H. Cohen, J. Non-Cryst. Solids 4, 391 (1970).
"E. N. Economou, S. Kirkpatrick, M. H. Cohen,
and T. P. Eggarter, Phys. Rev. Lett. 25, 520 (1970).

p. Weaire, to be published.

Surface and Pseudosurface Modes in Ionic Crystals*

T. S. Chen, G. P. Alldredge, and F. W. de Wette
Department of Physics, Univevsity of Texas, Austin, Texas 78712

R. E. Allen
Department of Physics, Texas A & M University, College Station, Texas 77843
(Received 19 April 1971)

The nature of the surface and pseudosurface modes in ionic-crystal slabs is clarified,
and some apparent discrepancies among the previous studies are resolved. The first
shell-model calculations of surface-mode spectra are reported; the results for NaCl
are significantly different from those obtained with the rigid-ion model. A new type of
long-wavelength optical surface mode has been found in the shell-model results for RbF.

Several theoretical treatments of optical sur-
face modes in ionic crystals have appeared re-
cently,’”” and it has been stated that there appear
to be discrepancies among the results of these
treatments.>>7 In the present Letter the nature
of the surface modes will be clarified, and these
results reconciled.

Until the present, two methods have been used
in calculations of optical surface modes in ionic
crystals: The first is the continuum approxima-
tion, first used by Fuchs and Kliewer® for a slab
with two flat surfaces, and subsequently used by
Englman and Ruppin®? for crystals with other

geometries, The second method involves lattice-
dynamical calculations for a slab-shaped crystal
based on the rigid-ion model of Kellermann,®
Such calculations were first carried out by Lucas*
for 7=0, where 7 is the two-dimensional wave
vector associated with propagation parallel to the
surfaces. Subsequently Tong and Maradudin® car-
ried out a calculation for values of 7 lying through-
out the first two-dimensional Brillouin zone.

In reconciling the results of these treatments,
it is necessary to recognize three limitations of
the continuum approximation: First, it is valid
only at large wavelengths (small 7) in a thick
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