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such a small interval in X that it is, for practi-
cal purposes, unobservable.

In conclusion, we have established the limiting
behavior of thermodynamic potentials at the crit-
ical point and have given preliminary values for
the critical exponents. These satisfy the scaling
relation [Eq. (2)], and one has in addition y+
=y+' within experimental error. Hence the su-
perfluid and normal regions appear to have at
least closely the same critical indices. Experi-
ments with a still more sensitive strain gauge
are being attempted with the purpose of obtaining
more accurate values of these exponents. Fur-
thermore, a study of small instabilities and the
hysteresis effects of the pressure readings will
be made.
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A free-energy expression for a pure superconductor is derived microscopically which
includes effects of a nonlocal order parameter. In the presence of strong field the sim-
ple transformation q q+2eA/c is no longer valid. Using this free energy, fluctuation
induced diamagnetism of a superconductor above T~ is calculated. The resulting univer-
sal behavior for pure superconductors is in good agreement with the experiment of Gol-
lub, Beasley, and Tinkham.

Recently Gollub, Beasley, and Tinkham' (GBT) reported observation of universal behavior in the
fluctuation-induced diamagnetism of clean superconductors above the transition temperature. This
magnetization has been calculated exactly within the framework of the Ginsburg-Landau (GL) theory
by Prange. ' However, the fluctuation spectrum of the (GL) theory overestimates the contribution from
short-wavelength fluctuations when a magnetic field B is present. This results in a calculated magnet-
ization which is considerably larger than the measured value' when B 0.05H„(0). Patton, Ambegaok-
ar, and Wilkins' (PAW) had dealt with this problem by introducing an energy-cutoff parameter into the
fluctuation spectrum. As a result their magnetization is strongly suppressed below the Prange value
if B& mcE/he (m = electron mass). Physical arguments" suggest the choice E =a'/2mbo'= eh&„(0)/
m. e. As pointed out by GBT, with this choice of E the PAW theory only begins to suppress the magnet-
ization strongly (to -& the Prange value) when B=H„(0), when in fact the corresponding measured val-
ue is almost zero. Thus, it would seem that some other physical effect must play a part in depress-
ing the magnetization of clean superconductors in a magnetic field. The present calculation treats in
detail the nonlocal effects which arise because of the presence of a magnetic field. It is found that
once the nonlocal effects are included, the magnetization is suppressed considerably (to --,' the Prange
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value) by the time 8 =0.06H„(0). Thus, good agreement with experiment is obtained without the inclu-
sion of an adjustable parameter.

Since we are mostly interested in fluctuations above T, we begin with the linearized Gorkov equation
for the order parameter A*(r),

b, *(r) = VkT g„Jd'r, Q(r„r)s+(r, ),

where Q„(r„r)=G ~(r„r)G~(r„r) and G is the normal electron thermal Green's function, with v
=2nkT(n+ 2).' Using a lemma derived by Werthamer, '

exp[(2ie/kc) f- ds A(s)] S*(r,) = exp[-i(r, -~) ~ II]a*(r), (2)

where II=-9/i-(2e/Nc)A(r), Eq. (1) can be simplified as follows. We introduce Q„(q) as the Fourier
transform of Q„('Y) for 8=0. We then subtlac't out the divergent part of the integral ln Eq. (1) by writ-
ing Q„(q) = [Q„(q)-Q„(0)]+Q„(0). The Q„(0) contribution is the well-understood BCS gap equation. Let
K(q) =-[kT/N(0)] Q„[Q„(q)-Q„(0)].Equation (1) becomes I A*(r) = 0, where the operator I is defined by

j, =N(0)&[in(T/T, )+Jd'x, d'q(2v) 'exp(iq r, )K(q) exp(-ir, II)].

N(0) is the density of states at the Fermi level. Expanding K(q) in powers of q' yields the usual GL

equation if only the q' term is kept. To obtain higher order q" one must keep the corresponding order
in (r, II)"/n l. However different components of II; do not commute, and in fact, in the case of con-
stant field 8, [II„,II,]= —i(2e/@c)8. Hence higher o-rder terms will include not only the combination
II ~ II = [V/i+ (2e/Sc)A]', but will also contain terms dependent on (2eB/Sc)' as well. It is thus inconsis-
tent to treat nonlocality in the order parameter (higher orders in q ) without taking into account non-

local electrodynamics, the expansion parameter being to'82e/hc in both cases. ' This is why the PAW

form for the free energy is not a. good approximation. A direct calculation of the $0'2eB/Nc depen-
dence is a hard counting problem. However, it is clear that the eigenstates of I. are the Landau states
(x I n, k, k'}, where

[V/f+ (2e/ac)A]'~ n, k, k'}= [k'+(4eB/ac)(n+-,')]
~ n, k, k }. (4)

Using a coherent-state representation the eigenvalues can be calculated as follows: We introduce the
operator g = (Ii,-ill, )(4eB/5c) '". Then a, a are Boson operators obeying [a, a t] = 1. Furthermore,
we can write exp(-ir, .II) = exp(-iz, ll,—p, *a+pat), where p, = —P'"(y, +ix,) and P =eB/Sc. The operator
exp(-p, *a+ pat) is the generator of a translation in the coherent state' Ia}=g„n"exp(- I n I'/2)(n!) '"
x ~In, k, k'}, i.e. ,

exp( u*~+ v-s') I~& = exp[(V&' u'&)/-2] I o'+ ~}

Using Eqs. (3) and (5) and performing the integrals' we obtain'

I (r~ n, k, k'}=g„(k, P)(r~ n, k, k'},

g„(k, p) =N(0)p(ln(T/T )+ [(-1)"/2]J e *"L„(x)E((k'+px)'")dx).

Equations (6) and (7) imply that the effect of a constant 8 field is taken care of to all orders if the
Gor'kov kernel K for zero field is folded with a function of area unity. If K(q) is approximated by q'

one recovers the GL form k'+4P(n+2) by using recursion relations for I.„(x) in Eq. (V).
We choose the free-energy functional to be f(A) =f, + V 'Jd'x b.*(r)l.b, (r). The functional f(L) has the

property that its variation leads to Eq. (1) and it reduces to the GL free energy when a(r) varies only

slightly over distances of the order of Nv F/4mkT. Following Schmid' the total free energy E can be
written in terms of the eigenvalues g„(k, P):

E =ED+ QJdk ln[g„(k, p)].

We have also calculated E directly by extending Hubbard's'0 method of expressing the partition func-
tion as a functional integral involving a free-energy functional. The results agree with Eq. (6) except
for corrections which can be shown to be small for clean superconductors. This will be reported in
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detail elsewhere.
We now proceed to calculate the magnetization'.

M = — = — —g dk 1n[g„(k, P)]+P—in[g„(k, P)]
BE VkT e B

BB m hc „ Bp

Next we note that Bg„/Bp can be calculated from Eq. (7) by making a change of variabley =px and dif-
ferentiating inside the integral sign. Using recursion relations for I.„,we rearrange" each term in
the series in Eq. (9),

M = —g dk 21n "'' — "''+
&Cn 0 2 gn gn ~n+z

(10)

We now have a recipe such that given an appropriate kernel K(q) for zero field we can obtain the mag-
netization after some numerical integrations. The kernel me shall use is that given by Werthamer:

K(q) =K(y) = Z ((~+-') '-[tan '(y/(u+-'))]/y),
n= Q

where y =n,q and cI, =kvF/4vkT. Fory &a, the function K(y) has an expansion iny', the lowest-order
term being that retained in the familiar Gl theory. For large y, K(y) grows logarithmically.

At this point we can understand the universal behavior in the pure limit. The properties of the su-
perconductor enter only through the parameters no and T,. Introducing the variables k' = n, k and b

=n, 'P, one concludes from Eqs. (7), (10), and (11) that -MB '~'/T is a universal function of 5 and e
=(T-T )/T .

Starting from Eq. (11) for K(y) the function MB '"/T can be calculated. An interesting approach is
to note that in Eq. (7) the x integration only extends out to x =4n+10. Furthermore for small 5 the k
integration in Eq. (10) is important only out to k = (bn)'", and the sum over n is important out to bn = l.
Hence for small 5 only the part of K(y) for y 6 1 is sampled. In this region Z(y) can be approximated
by a function of the form

P = 1-exp(-yy a), (12)

where y =7/(3)/3 =2.8 is picked to fit the coefficient of y in the Taylor series for K. Using this ap-
proximate form for K(y), the integrals in Eqs. (7) and (10) can be performed. The field-dependent
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FIG. 1. The field dependence of -M(T~)/H T~ vs b for pure supercouductors. Solid curve, the numerical cal-
culation using K(q) given by Kq. (11); dashed curve, the result using substitute kernel given by Kq. (12);- and dash-
dot curve, the experimental curve of GBT. In terms of scaling field Hs defined in Eq. (2) of GBT, 5 =0.008H/Hs.
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part of the free energy turns out to be convergent,

Z =a -(VuTP/2~'a ) Q (~/y)'"m '"D, (I-~ ) '

where D, ' = (1 + 2yb) [I +ln(1+ @)] and s = (I-2yb)/
(1+2yb). Note that 2by =B/H„(0), where H„(0)
is the upper critical field at T =0 as calculated
from GI theory. The expression for MB '"T
can easily be calculated from Eq. (13) in the
form of an infinite sum. The resulting universal
curve for 7.' =T, is shown in Fig. 1. It is inter-
esting to note that if nonlocal electrodynamics
were not taken into account one would have es-
sentially the PAW theory, and with our interpre-
tation of y one would obtain a curve of roughly
similar shape but which is shifted by a factor of
about 10 to the right. Nonlocal electrodynamics
thus has the effect of suppressing short-wave-
length fluctuations somewhat earlier than one ex-
pects just from examining the Gor'kov kernel for
zero field.

The substitute kernel we used is expected to
be very good for relatively small b. We have al-
so carried out a numerical calculation using the
exact kernel K(y) for 5 ) 0.003. This is the solid
curve shown in Fig. 1, and it coincides over the
range 0.003 & b &0.05 with the approximate curve.
Since the approximate theory should be best for
small b we conclude that it is accurate for all 5

&0.05. The experimental points from GBT are
also plotted and the agreement is quite satisfac-
tory.

For pure superconductors scaling in the tem-
perature is unnecessary. However, the scaling
introduced by Prange' is convenient in that the
magnetization as a function of temperature var-
ies less rapidly with b. The Prange scaling can
be expressed in terms of 5 and e as (aH„/8T)(T

T, )/—H=0.177'/b. In Fig. 2, MB'"—/T is plot-
ted as a function of this parameter. " Compari-
son with the data of GBT shows satisfactory
agreement.

Finally we would like to point out that in the
"dirty" limit ($,» I) it has been shown by Maki'
that what we have referred to as nonlocal elec-
trodynamics is not important for ql «1. This
partially accounts for the rather drastic increase
in the GBT scaling field in the presence of im-
purity. We have extended the present work to
arbitrary scattering length l. This work will be
reported in a later publication.

We would like to thank Professor M. R. Beas-
ley, Professor P. C. Martin, and Professor M.
Tinkham for helpful discussions.
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FIG. 2. Temperature dependence of M/H'~2T for-
three values of the parameter b.
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cerned, we use only the assumed tetrahedral co-
ordination of ~earest neighbors, so that the re-
sults obtained apply to diamond, wurtzite, and
related crystal structures and also the ideal ran-
dom-network model for amorphous phases. We
shall show that this model indeed entails a gap
for all such structures.

We assume a Hamiltonian of the form

H= Zv, lv;&(q;I+ Zv, lv, )(v, l. (1)
k, l

The functions y may be visualized as directed
hybridized orbitals of the familiar sp' type. The
first summation is over pairs of different orbit-
als i and.j associated with the same atom. There
are of course four per atom and they are as-
sumed to be directed toward the nearest neigh-
bors. The second summation is over pairs of
orbitals belonging to nearest neighbors and as-
sociated with the same bond (e.g., 1, 1' in Fig. 1).
To keep things as simple as possible, we treat
these orbitals as orthogonal as is commonly done
in such models.

Schrodinger's equation gives

for an eigenstate of the Hamiltonian, assumed to
be expandable in terms of y, A zero density of
states at E is to be deduced if either (2) has no
solution or, in the limit of an infinite system,
the eigenstate P cannot be normalized (i.e., it di-
verges at infinity). Let us then assume the ex-

Rigorous bounds for the density of electronic states are given for an idealized model
of a group-IV semiconductor based on the tight-binding method. These include inner
bounds which define a minimum gap in the density of states. The importance of this de-
velopment lies in its independence of periodicity. It applies not only to crystalline struc-
tures made up of tetrahedral bonds but also the random tetrahedral network which re-
cent studies have suggested for amorphous Si and Ge.

Recent experiments" have shown that amor-
phous Si and Ge appear to have a gap in the elec-
tronic density of states rather similar to that
found in the corresponding diamond cubic crys-
tals. This is a surprising result in view of the
inevitable high degree of structural disorder,
whatever the detailed structure of the amorphous
phase is assumed to be. Studies of the radial
distribution function' ' have in fact suggested a
~andom tet~ahed~al netzoo~k model for such sol-
ids. It seems that infinite networks can be con-
structed such that nearest neighbors are in per-
fect tetrahedral coordination (apart from small
deviations of bond lengths and angles from ideal
values) and yet the distribution of further neigh-
bors is highly disordered. Amorphous semicon-
ductors as prepared in the laboratory are thus
considered to have such a perfectly tetrahedrally
bonded structure with a distribution of voids' or
other defects dependent on the preparation.

The occurrence of a band gap in such a system
has stimulated widespread theoretical interest
but most rigorous results in this area" have so
far been obtained for models in which disorder is
imposed on a basic periodic system. The rele
vance of such models to the amorphous semicon-
ductor problem is at best oblique. Here we shall
address ourselves to the problem as it stands
without using periodicity in any way. A rather
idealized tight-binding formulation of the problem
will be used, but as far as the structure is con-
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