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Phonon Excitations in Liquid He II
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Recent experimental data on He II have been analyzed in order to test various analytic
properties of the phonon dispersion curve. In particular [e{p)/p], where e(p) is the en-
ergy of an elementary excitation, seems to be well represented by a power expansion in

P up to p =2.6 A ~.

A series of recent investigations on the struc-
ture of the He II phonon dispersion curve has sug-
gested a number of drastic changes in the long-
wavelength region. These new proposals fall into
two rather separate categories. The first' '
points out the existing experimental evidence for
an upward concavity of the phonon curve at small
momenta as gathered from specific-heat, sound-
attenuation, and perhaps neutron-inelastic-scat-
tering measurements. The second4 proposes, on
theoretical grounds, the inclusion of odd-power
terms in the local expansion for the energy e(P)
of an elementary excitation,

e(p)/cd =(I-o. p-n p'-o p' ~ )

of order higher than P. An admittedly incomplete
analysi. s of the effect of phonon-phonon interac-
tions, carried out by one of us (T.R.) in collabo-
ration with Ponzano and Barucchi, ' shows that in
a realistic fluid one cannot exclude the presence
of the linear term. '

Keeping this in mind we have examined the pos-
sibility of fitting the existing neutron data by
Cowley and Woods' with a generic power expan-
sion and of comparing these with specific-heat
data. In doing this one must necessarily strike
a balance by suitably adjusting the range of mo-
menta in order to avoid the following pitfalls:
(a) If the range is too narrow there are not enough
data to gather meaningful information of the coef-
ficients of the power expansion. (b) If the range
is too wide it may go beyond the radius of conver-
gence of the power-series expansion

(2)

In this case the coefficients of the fitted powers

may bear no relation to the actual power expan-
sion. This phenomenon should show up as an in-
stability, as wild oscillations of these coeffi-
cients versus the selected range, and as a gener-
al worsening of the fit.

We fitted e(p)/p and [e(p)/p]', as experimental-
ly given in Ref. 7, with standard Forsythe poly-
nomials" and rearranged them into conventional
powers both in the variable p and in p'. In the
limit p-0 we have taken e(p)/5p =c = 237 m/sec
= (18.12 A 'K))tB/5 with an error of 0.1 $. (A sim-
ilar analysis has been performed by taking c
= 238.5 + 1.5 m/sec with inessential changes in
the final conclusion. ) This was done for the
range 0 ~ p ~q where q increased from 1.1 to

0

3.6 A '. We report some of our results in Table
I. The following conclusions seem to be appar-
ent from our fits:

(1) Power expansions in P are cleanly favored
over powers in P', thus bringing some evidence
in favor of the Feenberg conclusion.

(2) Phenomenon (b) occurs in the function ~{P)/P
for @=1.9 A ', that is, the roton minimum. The
same phenomenon occurs in [e(p)/p]' for q = 2.7
A ' and beyond. The conclusion seems that e(P)/
P has square-root branch points near the roton
minimum and that these do not show up when

e{P)/P is squared. In fact our best fit for [e(P)/
p]' has zeros at p, = 2.9, p, =1.9+0.3i, p, =19
-0.3i, P, =-0.67, andP, =-2.5. This square-
root behavior is expected on two counts: from
the Bogoliubov'0 formula and from the fact that
eigenvalues of a matrix generally have these
singularities as a function of a parameter.

(3) If the fit for ~(p)/p and [e(p)/p]' is carried
out in the variable p', the phenomenon (b) occurs
almost immediately. Beyond 1.9 A ' the evidence
in favor of fitting [e(P)/P]' in P is overwhelming.
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Our best fit is then

e(P) =c)IP(1+0.55P-1.35P'+0.26P'+0. 19P' O.P5P')"' (3)

Table I. Compound table of some of our fits of the
liquid-He II dispersion curve relative to the interval
0-p - q. The fitting polynoxnials are of the type

N

f R)=~V c';»' (o'p=&),
j=0

where N can be 3, 4, or 5 and x stands for either p
(first and third columns) or p' (second and fourth col-
umns). The number in front of the coefficients in each
case is the X of the fit.
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where P is measured in A ', e(P) in 'K, and the
0

numerical coefficients are expressed in A" with
n=1 ~ ~ ~ 5)

We see that there appears a term inP in ac-
cordance with our proposal. The values of the
coefficients in the power expansion seem to be
fairly stable and consistent over a wide range for
q. Since the same obtains for e(p)/p for 0 ~q
~ 1.9 A ' we expect e(P)/P to be analytic in the
circle P = 1.9 A '. This implies that [e(P)/P ]'
should be positive in the range 0 ~q ~1.9 A '.

As we said, the extrapolated polynomial [e(p)/p]'
shows two negative real roots at -0.67 and -2.5
A ', but these may be brought to coincide by in-
creasing the coefficient of the fifth Forsythe poly-
nomial well within its variance and without ap-
preciably changing the physical region. Finally
the evaluation of the specific heat at low temper-
ature using the fit (3) shows an acceptable agree-
ment with Ref. 1. Since errors are not quoted
there, it is difficult to be more specific. In Fig.
1 we show our spectrum (3) together with the
experimental data (and their errors). ' In Fig.
2 our calculated temperature dependence of the
constant-volume specific heat, again compared
with the experiment, ' is reported. Beyond 2.6
A ' our fit becomes markedly inadequate, as ex-
pected. Here, indeed, hybridization of levels oc-
curs and this corresponds to the appearance of
more branching points. Also at about 2.7 A ' the
dispersion curve reaches twice the roton energy,
thus becoming unstable.

The best treatment of the instability threshold
is due to Pitaevskii. " According to Pitaevskii
e(P) should never go above 2A, but rather reach
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FIG. 1. The dispersion curve in liquid He II as given
by our formula (3) (solid line) con.pared with the ex-
perimental data taken from Cowley and Woods (Ref. 7).
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FIG. 2. Experimental constant-volume specific heat
[as given in Bef. 3] compared with the theoretical re-
sult obtained using formula (3) (solid line) . Dashed
line represents the result obtained when formula (3) is
modified (within a standard deviation) by adding a mul-
tiple of the Forsythe polynomial P5 in such a way as to
have e (p) —0 for negative p.

it with an exponential behavior

e(P) = 2&-o' expl-a/(P, -P)l, (4)

(e and a are constants and P, & 2Po) and abruptly
terminate at P =P,. This follows from summing
up divergent diagrams in the Dyson equation.
What the argument really shows is that either the
above is true or a =0. In the forthcoming work
of Ponzano, Barucchi, and Regge' some argu-
ments are reported supporting this possibility.
If this occurs, then our arguments show that e(P)
should cross the threshold at p, v 2 where po is
the roton momentum; that is, at threshold the
excitation should decay into two orthogonal ro-
tons. This relation is well satisfied for normal
vapor pressure; the threshold would occur at
2.7 A '. At higher pressure the only available
curve at 25.3 atm is published" without quoted
errors and is in rough qualitative agreement with
our prescription, but as already observed it
seems to reach twice the roton minimum at low-
er momenta than the predicted P,v 2 = 2.9 A '. We
think that any conclusion at the moment is pre-
mature since it is difficult to evaluate errors.
Also specific-heat measurements seem to favor
a slightly higher roton minimum (7.6'K instead
of 7'K) which would displace the threshold in the

right direction.
We do not claim here that our conclusions are

in any sense final, but merely suggestive, since
more refined data could well change the picture.
However they show that some precise statement
on the local analytic properties of e(P) is proba-
bly within reach, and this is no doubt relevant to
the long-sought theory of a realistic He II. Of
interest, also, would be an analysis of the known

discrepancies for sound attenuation with the pro-
posed fit.

Finally, the liquid-sturcture factor as calculat-
ed from (3) with the Feynman formula S(K) =K'/
e(K) has a downward-facing concavity at low mo-
menta in qualitative agreement with the hump
hypothesized by Massey. "
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