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When particles like quarks and magnetic monopoles are produced in pairs, there is a
suppression of the production due to the superstrong attractive forces which exist be-
tween the constituents of the pair. We present an approximate way of incorporating this
effect into a production model, and estimate lower bounds on the masses of the particles
from present experimental data using our method in conjunction with the standard statis-

tical model.

If magnetic monopoles exist and interact strong-
ly with hadrons, one should be able to produce
them in very high-energy p-p collisions. Since
we believe in macroscopic charge conservation
—and do not doubt the principle to hold for mag-
netic as well as electric charges—we expect to
produce monopoles only in combinations which
are magnetically neutral, which we shall take to
be particle-antiparticle pairs. The Dirac quanti-
zation condition® eg/%c =3 implies that mono-
poles interact superstrongly among themselves
(the strength of the interaction is characterized
by &2/%c = ¥In?), This attractive interaction
could cause the monopole and antimonopole to re-
combine (and annihilate) after being produced but
before leaving the region of the p-p collision,
thus suppressing the free-particle production
rate,

It is the purpose of this paper to discuss a way
of handling these superstrong final-state interac-
tions (fsi) which can be readily incorporated into
any standard model for particle production.? Our
aim throughout will be to try, on the basis of a
simple model, to extract some general features
of monopole and quark production to serve as a
guide in the search for these new particles. We
shall state clearly what assumptions go into our
final result, but shall not attempt a rigorous
justification at this time. As will become obvious
when results are presented, order-of-magnitude
estimates of production cross sections are quite
adequate for our purposes.

We begin by dividing the production process
into three distinct periods, as shown in Fig. (1).
These are as follows: (a) The projectile and tar-
get collide in their center-of-momentum frame
(referred to hereinafter as the fireball or FB
frame) and a heavy particle-antiparticle pair A4
with superstrong interactions is produced with
some amplitude A(p,, p,), where P, and p, are
the momenta of the constituents of the pair; (b)

the particles which are created now try to escape
from each other, but because of the superstrong
attraction between them, only a few will escape
and enter detectors as free particles; (c) in any
case, the particles either escape (upper Fig. 1),
or recombine and annihilate (in which case they
will not be detected, lower Fig. 1).

Let us now turn our attention to the problem of
producing magnetic monopoles. The interaction
between A and 4 is extremely strong and they
are produced very close together, so we expect
that escape will occur only when A and 4 have
very high relative energies: Thus we expect that
relativistic effects will be important. It is ex-
tremely difficult to do a relativistic quantum-
mechanical capture calculation in the strong-cou-
pling limit, so we shall make a relativistic clas-
sical calculation to decide whether A and A es-
cape from each other. We make the simplifying
assumption that the monopoles are point, on-
mass-shell particles that respect the classical
Maxwell equations, and that they are created in
pairs; but we replace the requirement of local
microscopic charge conservation with macro-~
scopic conservation over the interaction volume,
We also assume that in the FB frame they are
created simultaneously—other time distributions
are unilluminating and inconsequential to the re-

FIG. 1. Schematic representation of the process
b +p— (A+24) + (stuff) .
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sults.

Under these assumptions, any pair A4 can be completely characterized by the set of vectors (p,, f)z,
) in the FB frame; here p, is the momentum of A, P, is the momentum of A, and T is the distance be-
tween A and A when they are created. [The actual distribution in p,, P,, and ¥ is determined by the
model of part (a) of the overall production process.] It is useful to define an escape function 6(3,, b,,

T) such that

+~ . .. (1whenA and A escape each other
9( pl’ pz, r) =

Unfortunately there is no simple closed analytic
expression for 6(p,, b,;, F)—we must use numeri-
cal methods to solve for the orbits of A and A
for any given set (P,, D,, ¥) and see whether they
escape each other or not. We do this by trans-
forming to the center-of-momentum frame of the
A-A system, and then solve for the orbits of the
two particles numerically, taking exact account
of retardation effects and the relativistic trans-
formation of fields. The bremsstrahlung radia-
tion emitted by the monopoles while they move
in these orbits is calculated® and included in the
numerical procedure. However, it is found that
for almost all the monopoles which escape, very
little energy is lost by this mechanism (typically,
escaping monopoles will radiate less than 5% of
their rest mass), so that, although radiation re-
action is included in all results presented in this
paper, it does not play an important role. A de-
tailed discussion of this problem will be given in
a forthcoming paper.*

It remains to choose a model to describe part
(a) of the production process and incorporate the
escape function 6 of part (b) into it. In principle,
any standard production model could be used for
part (a), as long as it gives information regard-
ing the distributions of p,, DP,, and ¥ for 6(p,, B,,
r). However, because it is especially simple
and successful, we will use the well-known Hage-
dorn statistical model.>” Since we should like
to establish lower mass or upper cross-section
limits, this particular model is particularly ap-
propriate because it gives the most conservative
lower bound on the mass.

It should be noted that the division of the prob-
lem into two disjoint parts—one involving produc-
tion amplitudes [part (a)] and one handling the
restriction of the phase-space integrals due to
recombination [part (b)|—involves the neglect of |

0 when A and 4 do not escape each other. (1)

certain processes which might be present in na-
ture. To see this, consider the model outlined
above, where the production takes place in a fire-
ball. In this model, we imagine the monopoles
in the fireball (1) interacting with other magnet-
ically neutral particles (and with each other)
hadronically to set up the equilibrium, and (2)
interacting magnetically with each other. The
first type of interaction is incorporated in the
statistical model which we shall use, and the sec-
ond is handled approximately as outlined above.
What is neglected is the coupling between the two
—that is, the change in the way one monopole in~-
teracts with the surrounding hadrons (i.e., the
way in which it contributes to the hadronic equi-
librium) because of its magnetic interaction with
the other monopole. The assumption that this
coupling is small cannot be rigorously defended,
but is can be made plausible by noting that our
results are not changed significantly when we al-
low a large time delay between the time of pro-
duction of the two constituents of the pair, rather
than assuming that they are created simulta-
neously. A discussion of a similar problem aris-
ing in the production of antideuterons is given by
Hagedorn.®

Particles and resonances—among them the
monopole-antimonopole pair A4 under considera-
tion—coalesce from the fireball in average num-
bers (“multiplicities”) predicted by the statisti-
cal model. In particular, it is shown in Ref. 7
that, for particles of mass M so large that the
average individual multiplicity is a very small
fraction, the average number of pairs per fire-
ball having the particle A (mass M) momentum
(referred to the FB frame) in a range d3p, around
P, and the antiparticle A (mass M) momentum in
a range d3p, around B, is

W By, Ba; m)d®p,dp, = (2m)° T,

(AV)? exp |:.. ('p’f +M?)V2 - (522 + M2)V

2
]d%dspz. (2)

Here the volume AV over which thermodynamic equilibrium is established” is found empirically
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to be AV ~0.4(47/3)m " %; the temperature T, is
found empirically to be T,=160 MeV; and z =2j
+1 takes account of the spin states allowed for a
particle of spin j. We shall see below that exper-
iments place a lower limit on the order of a few
GeV for the monopole or quark mass M. This is
sufficiently large that the criterion above (2) is
satisfied, and also that the total pair multiplicity
Jv(B,, By; m)d®p, d®p, is a very small fraction; this
justifies our considering only one monopole-anti-
monopole pair A4 at a time, as in Fig. (1).

The p, and P, distributions to be used with
6(p,, D,, T) can be taken directly from (2); we
still must define an appropriate distribution for
F. It is simplest to take the fireball to be a
sphere of radius ~1 fm (this is consistent with
the AV given above) and assume that each mono-
pole (antimonopole) is equally likely to be created
at any point within this sphere (this is the only
distribution consistent with the statistical pic-
ture). We can then write down a probability
P(7)dr that the distance between A and 4 is be-
tween 7 and 7 +d7v.

It is now a straightforward matter to incorpo-
rate the idea of suppression due to fsi (described
by 6) into this statistical model. Were it not for
the influence of fsi, the average number of A’s
(or A’s) emerging from a very high energy p-p
collision would be the integral of (2) over all p,
and 52. However, with fsi present, we must be
sure to count only those cases in which P, and P,
are such that A and A will indeed escape from
each other; this is taken care of by multiplying
the differential pair multiplicity (2) by the escape
function 6(p,, p,, ¥) from (1) and weighting with
the probability density P(») mentioned above.
Thus we must evaluate, for a given monopole
mass,

v=[Pr)UB,, By; M)O(B,, By, T)d%, d% dr. (3)

Here v is the average free-particle multiplicity
per fireball, i.e., per p-p collision above kine-
matic threshold.

In Fig. (2) we have plotted the average free-
particle multiplicity v from (3) as a function of
mass for monopoles having magnetic charge such
that eg/fic =3n withn=0, 1, and 4. The n=0
case corresponds to having no final-state inter-
action between the monopole and antimonopole;
thus it is the prediction of the statistical model
in ordinary application. The relation between v
and the ordinary cross section can be obtained by
noting that the production cross section for mono-
poles from a monochromatic beam of very high-

=3

Log,, (V)

—40 I | | ] | |

0 1 2 3 4 5 6
M (GeV)

FIG. 2. Calculated free monopole and antimonopole
multiplicities per collision, v, plotted as functions of
monopole mass for different fsi couplings: g =0, solid
line; eg/Fic =%, dashed line; eg/#ic =2, dot-dashed
line. Experimental limits are from Refs. 9 and 10.

energy protons impinging on a proton target can
be written

Oup=0pp V) (4)

where 0, , is the familiar 38-mb total p-p cross
section.

The experimentally observed multiplicity at
95% confidence in two recent (null) monopole ex-
periments is also plotted in Fig. (2).*!° The dual
interpretation of this graph should be noted: (1)
If an experiment of a certain sensitivity is per-
formed and monopoles are not seen, then either
the mass M of the monopole is large and the sta-
tistical factor exp(~2M/T,) suppresses the pro-
duction amplitude, o7 the magnetic charge g is
large and the production is suppressed by the fsi.
(Of course, if both g and M were large, we would
have the worst of all possible worlds.) (2) Be-
cause of the suppression of high mass in the sta-
tistical model, and because the lunar search ex-
periment already is near the limit of sensitivity
for present experimental techniques, it is unlike-
ly that monopoles of mass =5-7 GeV will be seen
directly. For monopoles in this mass range, the
fsi introduce a reduction of at least two orders
of magnitude in the expected production cross
sections.
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Finally, we conclude from our graph that lower
limits can be placed on the monopole mass by
present experimental data. These limits are
M, =3.25 GeV for eg/fic =3, and M, 2 2.25 GeV
for eg/fic =2. A similar calculation for quarks
gives M,=21.75 GeV.
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Anomalous Behavior of yy - nr’ in Effective Lagrangians™
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A recent result of Aviv, Hari Dass, and Sawyer, relating the anomalous value of vy
— (any odd number of pions) to the anomalous rate of m"—2v, is demonstrated by conven-
tional graph techniques. It is also shown that the neutral mode yy— ntd is suppressed

for all odd =.

Aviv, Hari Dass, and Sawyer' (AHS) have re-
cently shown that the matrix element for yy -nn
(where n is odd) at zero pion four-momenta is
related to the matrix element for 7°~ 2y, and
that the anomalous value of the latter?'® implies
that the former also does not vanish as formal

“naive”) chiral symmetry arguments would lead
one to believe. They observed that requiring
functional derivatives of the Lagrangian £ with
respect to external pion fields to transform co-
variantly under SU(2)®SU(2) does not imply that
&£ itself is a chiral scalar, but rather implies
only that the nonscalar part have a particular
functional dependence on the pion fields. Accord-
ing to AHS, the part of this noninvariant piece
which contains only neutral pion fields must be
of the form*

B(F ) arcsin(2am°). (1)

The pieces containing charged pion fields can be
obtained from (1) using isospin arguments.! By
considering graphs arising directly from (1)
alone (“nonpole” terms), together with (1) com-
bined in the usual way with the conventional in-
variant piece of £ (pole terms or tree graphs),
one can calculate the amplitude for yy —nn°. In
particular, AHS show that the total 37° amplitude
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is zero at zero momentum.

Our purpose here is to show how the AHS re-
sult may be derived in a more conventional, if
less elegant, manner, and then to use these
methods to demonstrate that yy —nn° is forbidden
for all #>1. This note is therefore both a gloss
on, and an extension of, AHS.

In what follows we several times exploit the re-
markable freedom to redefine the pion fields
without destroying chiral symmetry, or indeed
without altering any on-shell matrix elements at
all. In the first place, rather than working with
the 7 fields used by AHS, it will be instructive to
use the more familiar choice in which the covari-

(b)

FIG. 1. Examples of (a) nonpole graphs and (b) pole
graphs for yy —nn’.



