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The equilibrium thermodynamics of a one-dimensional fermion system with a repulsive
6-function interaction is found to be derivable from the solution of a set of coupled inte-
gral equations. The equations for the attractive case are also given.

One of the interesting problems in the one-dimensional 5-function interaction model is the thermo-
dynamics of the fermion system. For the boson system, the solution has been given by Yang and

Yang. In this paper we show that a similar procedure can be applied to solve the fermion case,
though in the latter it is far more difficult to find all the excited states of the system. Here the Hamil-
tonian of the system is

N 2
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and we will consider the case where the wave function belongs to the symmetry [2"]." '"j of the per-
mutation group. The ground-state energy of such a system is given by Yang2 in solving the following
algebraic equations:
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where L is the length of the box. In the ground state, the p's and A's are real numbers. In the ex-
cited states, the A's might be complex. As regards the distribution of such A's in the complex plane,
we make the following assumption, leaving its justification to be discussed in later publications. We
assume that the A's are located in strings in the complex plane, that is, the A in a string is of the
form

A =$+ip1)+O(e '~), t1=-(m-l), -(m-3), ~ ~ ~, (m-l), (3)

where 1)=-,c, k &0 is a certain number, and $ is real. The integer m defines the length of the string
which contains m complex numbers. Thus the two numbers $ and m (which depends on $) define a
string uniquely. Using the notation C($, n) for such a string, we obtain from (2a) and (2b)
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where the product II' extends to all the strings except C($, m). Taking the logarithms of (4a) and (4b)
we have

(»)

22=2ni + g 4( ), (5b)

where 0(p)=2tan (p/11), && and I, are integers or half-integers coming from the undetermined mul-
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tiple of 2m in the Iogarithms, and

1 for E=+m, Em,
a „, = 2 for l=-(m-2), -(m-4) (m-2)

0 otherwise.

Now we can approach the Iimit N, M, I -~ proportionaIly, obtaining
00

8' p(p)dp =2m{o +o „)+Ta „, 0'
l

o($')d&',

2~ln+=P. ) Qf-~'( „)~ (( )~.('
where

¹ d$ t=he number of $'s for strings C($'m) in the interval [g, g+d$],

No „d$ = the number of "holes" for the above $'s in the interval [$,$+d$], etc. ,

(Va)

{Vb)

F/I-= f.p'p(~)dp, N/I. = f p~p,

~/l. =Q„f„no„(~)d~

(»)

From (Va) and (Vb) one can easily obtain

1/2w=p+p„-2 f„G,(P-k)pdk+ 2f G, (p-k)o, „dk,

o„+o„„=~zf G(p- k)( „o„„+„o,„) dk n~2,

lim 5 G,(P-k)(o„„„-o„„)=0,
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One can now minimize the free energy (E-TS)/I. to obtain the equilibrium distribution p's and cr 's.
If one writes

p„/p=exp[e(P)/T], o „/o =exp[o (k)/T]

and makes the variation

5((E-TS)/1.) =0

subject to the conditions

5 (N/I, ) = 0, 5((N-2M)/L$ = 0,

one obtains the foIIowing:

A=pm & ,'Tf -G,-(p—-k)ln(1+e " )dk 2Tf G (p-k-)ln(l+e~&'r)dk

y,= 2Tf G(p- )k[1 (n1 e+~&'r)-ln(l+e "r)]dk,

q „=-,'Tf G,(p-k)(in[1+exp(p„„/T)]+in[1+exp(y„, /T)g dk, n -2,
8 = lim-,'Tf G, (p-k)(in[1+exp(O „„/T)]-in[1+exp(y„/T)]]dk,

(12)

(14)

(15a)

(15b)

(15c)

where A and 8 are the Lagrange multipliers for the conditions {14), respectively. 8 can be seen as
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magnetic field. Once & and the p„'s are obtained, one has

p = -(1/2w)(1+e "r) '&e/BA,

v„„=-(1/2m)[1+exp(-(p /T)] 'sa -/&A,

The free energy E and the pressure I' are then given by

(16a)

(16b)

F N T -,/~ N-2M—=A ——— ln(1+e " )dk B-
2m

(17a)

P = (T/2m) f„ln(1+ e " )dk. (17b)

Other thermodyanmic quantities can be obtained readily.
One can easily show that in (15a)-(17b) the limit c-0 gives the result for a free-fermion gas, and

the limit c-~ gives the result for a free-fermion system where each single-particIe energy level
can only be occupied by either a spin-up or a spin-down particle. As T-O, (10a) and (10b) also go
back to the equations of Yang. ' Details of the exact solution of (15a)-(15d) will be published later.

One can obtain the fugacity and virial expansion by writing in (15a) and (15b)

exp( e/T)-= g a„(k, T)z", exp(y, /T) = Q y ~'&z" z =e"'
n=O

and solve for a„. In the case B =0, the pressure P is

w T)"* -2p2P= 2z+z 2 +2 exp dp + ~ ~ ~

27r -- n(rP+p') T

This agrees with the result obtained directly by the standard method. Higher-order terms in the
virial expansion can be obtained systematically also.

We have also obtained the thermodyanmics of the repulsive fermion-boson mixture, of fermions in
the attractive case, and of fermions with higher spins in both the repulsive and attractive cases.
For attractive fermions of spin & we obtain

2(p vp) e-+T -f K21n(1+e " )dk+T f K, ln(l+e +r)dk =2A,

p'-p+T f„K,ln(1+e "r)dk+2T f G, ln(1+e ~~ )dk-zT f Gl n(1 +e~&' r) dk= A,

2T f G, ln[l+e p(xy„„/T)]dk+ ,'T f„G,in[1+-exp(p, ,/T)]dk-y„=0, v~ 1,

lim 2T f Ggin[1+exp(p, /T)]-1n[l+exp(v„, /T)]}dk =B,
p ~ oo

where go=a, K„(x)= (2m) '2nq(n'g'+xm) ', and

o „„=(2m) '[1+exp(-y„/T)]-'sp/aA, p = -(2~)-'(1+ 'e)-'e /seA

The energy and free energy are found from the following equations:

(20)

(21)

& =-(2w) '(1+e~'r) '8(/BA, (X-2M)/L =lim f v, „dp, E/L = f p Tdp+2f „(pm-rp)pdp,
7J w 00

N/L= f 7'dp+2f pdp, —=A ———f ln(l+e " )dk- —f„ln(1+e ~~r)dk-B
Oo F N T - ~/T T "

g~ N2M
(22)

For a fermion-boson mixture with M, fermions of species 1, ~~4, fermions of species 2, and M„
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bosons, we obtain

Tf„G,»(1+e " )dk=T f G, ln(1+e ' )dk=', T f G, in[1+exp(p, /T)]dk

C = -/+A-pm+ e,

p, =
p T f„Go{in[1+exp(p 2/T)]-in(1+e " )-ln(1 +e ~'r)) dk,

y„=—,'Tf„G,(l n[l+e xp(y„„/ T)]+in[1+e xp(rp„, / T)]) dk, n ~ 2,

& =lim &Tf„G(in[1 +exp(y„„/T)]-in[1+exp(p„/T)]) dk, (23)

with

p = —(as ) ~(1 + e ~
) ~8&/8A 7 = —(am') '(1 + e~ ) '8g/8A, o„„=-(am) '[1+exp(p„/T)] '8y„/8A;

E/L= f p'p(p)dp, N/L=(M, +1Vl, +M, )/L= f „pdp,

41'/L =f rdp, (iM~-M 2) /L =lim f o'„„dp,

(24)

00 M~-M2&—=A —+C ' ——f„ln(1+e ' r)dk B-
L L L 2m L (25)

AO the details wi11 be published elsewhere.
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Photoelectric emission and work-function measurements on GaSb have shown that the
surface potential, and therefore the band bending and work function, of freshly cleaved
surfaces present variations of up to 0.5 eV over macroscopic distances along the surface.
These properties vary over a period of several days at room temperature in the sense
that band bending increases and inhomogeneities disappear, suggesting annealing of
cleavage-induced strains or defects. The electron affinity and ionization energy of fresh-
ly cleaved surfaces are well defined: They do not present spatial or temporal variation.
Related observations were made on InP and GaAs.

Cleavage in ultrahigh vacuum' is a classical
method for preparing clean and well-defined
semiconductor surfaces. It has the advantage of
being simple and of producing unquestionably

clean surfaces with unchanged doping and stoi-
chiometry of the material in their vicinity. Such
surfaces also produce excellent low-energy elec-
tron-diff raction patterns which, however, often
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