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Variations of exotic-atom energy levels and widths with the strength of the nuclear in-
teraction are explained with the aid of a soluble model.

In a recent I etter, ' Krell has shown that the
calculated energy levels and widths for exotic
atoms (e.g. , &-mesonic atoms) vary in a quite
unexpected fashion with the strength of the as-
sumed nuclear interaction. %ith the aid of a
suitable solvable model, we have obtained a sim-
ple explanation for these results.

Krell solved the Klein-Gordon equation numer-
ically for point Coulomb potential plus an optical
potential of the form V~ (ReA, +ilmA, )p, where
Ao is the E-nucleon scattering length and p is the
nuclear density. He found two effects: (l) For

large values of ImAO, the optical potential was
rePulsive, i.e., it decreased the binding energy
from the point Coulomb value, even in the pres-
ence of an attractive real potential. (2) For in-
termediate values of ImA„ the calculated ener-
gies and widths each exhibited oscillations (about
90 out of phase with one another) as ReA, was
increased. The oscillations were similar in ap-
pearance to those obtained with our model and
shown in Fig. 1.

Despite the relatively small energy shifts pro-
duced by the E-nucleus intex action, perturbation
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theory cannot be used to understand these effects.
First-ordex perturbation theory gives only a
crude estimate of the exact shifts. In second
order, large contributions arise from interme-
diate states high in the continuum. It is only the
smallness of the atomic wave functions of inter-
est inside nuclear di.mensions which makes the
expectation value of the very strong nuclear po-
tential so small. Furthermore, Krell's results
clearly rule out eigenvalues which are rapidly
converging power series in the strength of the
optical potential.

For a strongly absorptive optical potential, the
wave function goes to zero rapidly inside the nu-
cleus. Thus the meson never "sees" the strong
Coulomb attraction at short distances, tending
to reduce the binding. Turning on an attra. ctive
x eal optical potential can have only relatively
minor effects, since the wave function barely
penetrates the nucleus. These minor effects,
however, ean produce oscillations. We will see
this below in our solvable model after some pre-
liminary considerations.

First let us study the Schrodinger equation for
an imaginary potential "barrier, "

V=0, x&0,

V =-sV„x&0.

Let the wave numbex for x & 0 be k; the energy is
E=k'. (We use 2m=5=1. ) The wave number K
for x &0 satisfies K'=E- V=k'+iV~. If 0 is real
(or almost real) and ~k~'& V„ then K has a large
imaginary part. Thus for x&0 the wave mill in
general be a sum of increasing and deexeasing
terms. One can, however, find standing waves
for x & 0 which fit smoothly onto exponentially de-
creasing terms for x &0.

Similarly, if K is nea. rly real and ~K['& V, ,
then we find generally an exponential superposi-
tion for x&0. Again, standing waves exist for
x & 0, fitting smoothly onto decreasing terms for
x&0.

We see, therefore, that the barrier acts iden-
tically for maves with real wave numbers on ei-
ther side of x =0. It causes them to have expo-
nential behavior on the opposite side.

Second, we note that for complex w, a standing
wave sin~x has no zeros (except at x =0). How-

ever, with K = &~+i~„

[slnlcx[ =sill Kgx'+slnh Ic~x

is a sum of oscillating and exponentially increas-
ing positive terms, and has "dips" when K~x =n~.

The number of dips apparently characterizes the
eigenstates of complex potentials in the same
may as does the number of nodes fox real poten-
tials.

Our solvable model is a nonrelaticistic s-wave
particle in a spherical box of radius x~ contain-
ing a complex square well of depth V=-V~-iV~
and radius x~. In numerical examples, we use
x~=20 F and r„=4 F to simulate the respective
atomic and nuclear radii. A state with energy
E = ~-i-, I' has wave numbers given by

Its wave function is proportional to r ' sinKx for
l &r„, and to l' 'sink{r„-r) for x„&r&r„. Its
energy satisfies

K cotKr~ = -k cotk(r„-t'„),

The roots of (2) are obtained by searching in two
dimensions starting from the familiar V =0
ei genvalues, E = (n m/r„)', n = 1, 2, 3, ~ ~ ~ .

For the case of strong absorption and no at-
traction, V = -iV~, tmo distinct types of eigen-
states exist: "inner states" and "outer states. "
This has already been suggested by our discus-
sion of the imaginary barrier. For an inner
state, the wave number in the inner region (r
&r„) is nearly real. The wave function is strong-
ly attenuated outside of r„, and I"=2V~. For an
outer state, the wave number in the outer region
(r„&r&r„) is nearly real. The wave function is
strongly attenuated in the inner region, and I
«21, [see Fig. 2(a)]. In the limit of very large
V~, this separation becomes complete, and the
energies approach the appropriate spherical-box
values:

E, = (n p/~„)'-l V„
n ~ = 1 2 ' ' ' (lllllel' states)'

n, = 1, 2 ~ ~ ~ (outer states).

In our terminology, the atomic states considered
by Krell are outer states.

We now consider the evolution of the spectrum
from the V=O limit. First let us increase Vz
from zero. Some of the original spherical-box
states develop into outer states while others be-
come inner states. For our numexical example,
the n = 3 and 9 states become the two lowest inner
states, and the remainder of the first ten states
become outer states. Confining the ground state
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FIG. 3. Dependence of Eo on V& due to the energy
denominator {3). Since 6e; = -Vz, the resonant behav-
ior has a width l; =2'. Vz is given relative to Vz,
the attraction for which E; =co, in units of I';.
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FIG. 2. (a} Level diagram for V@=0 and VI—-2.5 F
The absorptive region is r& rz. ) 4'~ is sketched for
several levels to show the separation into inner and
outer states. (b} Level diagram for V+=12 F 2 and V~
=2.5 F . The n;-4 states are in the nuclear well.

to a smaller region has the effect of raising its
energy. This effective repulsion has been stressed
by Krell.

Next let us increase the attraction V~. The in-
ner states are drawn down into the attractive
well as shown in Fig. 2(b). The outer states are
only slightly affected because of their small pen-
etration into the inner region. However, ep and
l"p for the lowest outer state 4p do display oscil-
lations with an amplitude &10 Va (see Fig. 1).
They do not appear until V~/Vl & 3, and their
"period" increases with Vs. This period cor-
responds to the change in V~ needed to add half a
wavelength to the inner portion of 4,. Such a
change would also add half a wavelength to an in-
ner state 4', if &,. =op. This suggests that the
oscillations may be attributed to inner states
"crossing" the lowest outer state as they drop in-
to the attractive well.

To verify this conjecture, let us study the cou-
pling between states 4,. and 4'p as V~ is increased
from zero. Solving the two-level problem gives
an inner-state energy shift 5E,. = —V„because +;

or

V~' 'r~ = (n,-—)v.a (4)

Equation (4) gives the values of V~ for which c,.
= c„ these are shown for n; ~ 3 as solid circles
in Fig. 1. The role of the inner states in produc-
ing the oscillations is therefore confirmed.

We see then with this example that the repul-
sion and oscillations found by Krell have a simple
explanation. The implications for the phenomen-
ology of exotic atoms have already been noted. '

is almost entirely localized in the inner region.
We also find a contribution to 5Ep proportional
to V„'/(E;E,), where the energies are the actu-
al eigenvalues, not the V~=0 limits. ' Since I'p

«l, ,

1 (e,-e,.)-i-,'r,.

E;E, (e,-~,.)'+. —,'r,.'
This is plotted in Fig. 3. Both real and imagi-

nary parts look roughly like pieces of a sine
wave. The former is increasing linearly with
V~ (decreasing with e,) at e,= eo, and the latter
has a minimum there. Generalizing now to sev-
eral inner states coupling to 4„we expect to ob-
serve oscillations in E, provided that successive
states are separated in energy by more than 1;
=2VI.' The values of V~ for which f '= 6p are
given by a very simple formula for V~» V~.
Since s, ((ar; = Vz, Eqs. (1) become IP = Vz and

iv~ E-quat. ion (2) then reduces to

cot(V,"'r„)=i(-iv, /Vg"'=O,
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We should expect to observe these effects when-
ever the absorptive optical potential is strong
enough to produce a division into inner and outer
states.

To the best of our knowledge, the existence of
inner states has not previously been discussed.
Of course, any exact solution of the wave equa-
tion for the usual problems automatically takes
them into account. We hope to study further
their physical significance and implications for
other experiments.

We wish to thank Professor Max Krell for stim-
ulating discussions and for sending us a preprint
of his work. We also thank Professor Robin
Tucker for the use of his search program. The

computations were performed at the University
of Massachusetts Research Computing Center
with the aid of a grant from the University.

*Research supported in part by the National Science
Foundation.

M. Krell, Phys. Rev. Lett. 26, 584 (1971).
2These results are obtained by an expansion in pow-

ers of the penetration of 40 into the inner region. They
are not an expansion of powers of Vz. Since the Hamil-
tonian is not Hermitian, its eigenstates are not neces-
sarily orthogonal; this complication does not affect
our qualitative discussion.

This can be derived using projection-operator tech-
niques. See H. Feshbach, Ann. Phys. (New York) 5,
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Rayleigh scattering has been studied along the critical isochore and the coexistence
curve of carbon dioxide. Measured intensities interpreted according to the theory of
Ornstein and Zernike agree with expectation based on classical PVT measurements. It
is suggested that over many decades of temperature distance from T~ the I'VT and opti-
cal data. are consistent with a reduced compressibility (Bp/Bp)z, ——I't 7, and I' (-t) &,
witht = (T T,)/T, , wh-ere y= 1.17+0.02= y' and I'= 0.072+0.006= 4.1I" = 2.61"hq.

Data have been obtained on the intensity of crit- Intensities of the incident and scattered light
ical opalescence in carbon dioxide in the super- were measured with an RCA 7265 photomultiplier.
critical phase along the critical isochore for T The photomultiplier was calibrated by an addi-
&T, and in the gas and liquid phases close to the tion method: Two small light bulbs were placed
coexistence line for T &T, . Intensities were close together relatively far from an aperture
measured for light of wavelength 0.633 pm, scat- in front of the photomultiplier; the intensities
tering angles of 13.5 and 22.5', and temperatures of the two bulbs were made equal as measured
in the range 10 ' &

I T T, I- 10 C-. by the photocurrent, then added to give a reading
Measurements were made on CO, contained for double intensity. The intensity was doubled

in a scattering cell constructed of stainless steel, repeatedly this way to calibrate the photomulti-
with indium and lead seals. It had plane, paral- plier over eight decades of intensity. The cali-
lel sapphire windows 5 mm apart which were bration thus obtained agreed with one based on
antireflection coated and oriented so as not to an assumed linearity of photocurrents below 10 '
depolarize light. No depolarization was observed A and with a calibration based on neutral density
with this cell upon filling it to nearly the critical filters whose densities were checked by pre-
pressure of CO, . The volume of the cell was cision densitometers.
adjusted so that at T, the meniscus appeared at The temperature of the cell was controlled to
the center. The position of the cell (its height) &3x10 "C, with thermal gradients 60.1 mdeg/
could be adjusted relative to the incident beam cm. Temperatures were measured with a plati-
of light to obtain scattering from above, below, num resistance thermometer to a reproducibility
or at the meniscus. A narrow beam of light of -10 ' deg.
(-0.1 mm diam) from a 4-mW He:Ne laser was Two fills of CO, were used, each of nominal
used to illuminate the gas in the cell. The in- purity better than 99.99/p. The critical temper-
tensity of the light was attenuated, for measure- a«res were measured to be T, =30.99~0.01'C
ments close to T, , using neutral density filters. using the platinum resistance thermometer which
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