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The Phillips=Van Vechten dielectric theory of binary tetrahedral compounds and Le-
vine’s bond-charge model are formulated in terms of macroscopically defined linear and
nonlinear bond polarizabilities. This formulation allows the determination of the linear
and nonlinear optical properties of tetrahedral solids. As an illustration, the case of
ternary compounds with chalcopyrite structure is considered. Theoretical and experi-

mental results are in good agreement.

According to the theory of Phillips and Van
Vechten'"® (PVV), the dielectric constant € of an
elementary (A) or binary (AB) compound with tet-
rahedral coordination? is

€45=1+D 579, /E (AB)]?, (1)

where

E XAB) =H*(AB) +C*(AB),
C(AB) =1.5€¢%(Z ,/v 4=Z /7 p)exp[—3k (v , +7})],
H(AB)x (v, +7g) ™25,

The correcting factor D, is introduced® to take
into account the contribution of the core elec-
trons. Z, and 7, are the valence number and co-
velent radius,® respectively, of element 4; Q,
and & are the plasma frequency and the Thomas-
Fermi screening constant, respectively, calcu-
lated for a free-electron gas with a density of
four electrons per atomic volume.

The polarization induced by an external field
E in such a material is therefore
o Dap =
o EKZ(AB) E: (2)
where V is the volume of the unit cell, a,=%?%/
me®, and E, =me*/202,

In a very different and more classical approach
the linear susceptibility tensor x;;*) can be cal-
culated from the linear microscopic polarizabil-
ity tensor «;; of the bond. For a bond with axial
symmetry the only nonvanishing elements of a,;
are o and a,. The calculation of the bond polar-
izabilities proceeds as follows.*” One assumes
first that the local field _ﬁloc is constant over a
bond and is the same for all directions. Taking
then a common value W for all the energies W,
-W, in the Kramers-Heisenberg dispersion for-
mula a,(0) =4e%}],.,]2,;[2/(W,-W,) and in the
Thomas-Kuhn sum rule (2m/72))5; «o(W,—W,)

=_16
B =37 (2a,)'E

td

X|zy;12=1, one obtains
oy =(2a0)°E 2 /W 1|2~ (3)

z is parallel to the bond axis; 0 and ¢ correspond,
respectively, to the ground state and to an excit-
ed state; and (2m/B® )W = (|42 =124 2 @,
and W, are defined by changing z into x or y. It
should be noted that these approximations are
very similar to those leading to Eq. (1) in Penn’s
work®, It is convenient to introduce the two sca-
lar invariants associated with the irreducible
components of «;;: the average linear polariz-
ability @ =(a,+2a,)/3, and the linear polariz-
ability anisotropy 9a =(a,-a,)/3. The average
linear polarizability can now be written as

(o, B 3 _ 1 2
a (2a0)Wz, W W”3+Wj" (4)

The polarization induced by an external field E
in a crystal with diamond, sphalerite, or ideal
wurtzite structure (which are built up from a
single type of bond) is

_16

- E? -
P=T/_aEloc_ v

zao)s—WTEloc (5)
Comparison of formulas (2) and (5) leads to the
following interpretation of the PVV theory: The
dielectric constant of a tetvahedrally coovdinated
solid can be calculated as if each bond sees only
the applied field and has an average polarizabil -
ity a ,5* =(2a,)°E’D ,p/E 2*(AB) which is macvo-
scopically defined. This is equivalent to saying
that the local field effects are automatically taken
into account by assigning to W the value E, deter-
mined by PVV to fit the experimental dielectric
constant.

A macroscopically defined bond nonlinear sus-
ceptibility 8* =8,* can be calculated from Le-
vine’s bond-charge model.>° It is found that

Bx =(C* +p*)(a*/E P, (6)
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where
Za+Zp €2
C* =12ﬁj ;exp[—%ks(VA +7’B)]Cg
B
80H?
= -
p q(,},A+,),B)z (’VA /VB)

are functions of the bond charge ¢ =—2¢/€ (€ is
the dielectric constant of the material). Let us
define for a microscopic dipole an analog of
Miller’s'! A that describes the total acentricity
of the bond,

6% =p*/a*® = (C* +p*)E, (2a,) . (M)

We are now in a position to calculate the di-
electric properties of a tetrahedral crystal. The
crystallographic axes are XYZ, and V is the
volume of the unit cell. Let (xyz)® be the axes
associated with the bond s.}? (The variable index
s covers the different bonds of a unit cell.) Then

Xav(l) =%(XXX +XY1’ +XZZ) = V‘lzsas*’

1) =1

ax 5(2X22=Xxx=Xvy)
SVIDHE cos,, I-1)0a,,
Xxvz 2) ~ V‘IES Bs* Cosgzz(s) COSQZy(S)
X086, (). (8)

If the material has a small birefringence then
Miller’s A is

ol
Dyyz = 3Xxyz /(X as™)P
=3V3y, 7,6,* cosb, ;¥ cosb, ') cosb, ),

where we have introduced the weight of a bond,
Ns= (as*/zsas*)3'

As an illustration of the above theory let us
consider the case of ternary compounds (ABC,)
with chalcopyrite structure. These compounds
are attractive materials for nonlinear optics
since one expects that they have, like binary
compounds, high nonlinear susceptibilities.!?
The birefringence is high enough to allow phase
matching'* as has recently been demonstrated
for AgGaS,.’®* More than fifty ternary compounds
have been reported. However, high optical qual-
ity crystals are difficult to grow.

The chalcopyrite cell can be built up from two
sphalerite cells.* The distortion with respect to
two superposed sphalerite cells can be charac-

‘terized by two parameters 7 and o:
T=2-c/a, 0=4x-1,

where ¢ and a are the cell parameters, x is the
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abscissa in units of a of the anion C in crystallo-
graphic position®® d; the cations A and B are in
positions ¢ and b, respectively. Equations (8)
give immediately

16 Dac . D
1) - =2 37 3 BC
Xay'' = (2a0)'E, [EgZ(Ac)+EgB(Bc)]’

ax(l) = %(XQ_XQ)

==(16/3V)[(T+0)8a g * +(T=0)0a 4 *]

A :L—(..Y—)a __iégi__sﬁ *
1 6V3 \16) [\a o*+ay*/ "4C

Qpc* 8
(e et
where use has been made of cosf,,(*) cos6,
Xcos0,,(*)=(3V3)* to the second order in T
and o.

The PVV theory deals with the isotropic part
of the dielectric constant and therefore with the
isotropic part of the bond polarizability. In order
to include the anisotropic part of the bond polar-
izability the theory could be extended by defining
macroscopically the ansiotropic part of the di-
electric constant from experimental measure-
ments, as has been done for €. There is at the
moment insufficient experimental information to
allow such an extension.

In Table I we compare the theoretical refrac-
tive index with experimental values for nine ter-
nary compounds for which measurements have
been reported. The agreement is very encourag-
ing. For the only material whose nonlinear sus-
ceptibility has been measured, AgGaS,, the
agreement is very good:

4

AL,152.4X107% esu, Ap.,;=2.5X107° esu.

The theory can be used in materials research to
predict those materials which are likely to be of

Table I. Experimental and calculated refractive in-
dex.

Compound Mexp M eale
ZnSiP, 3.1 3
ZnSiAs, 3.1 3.4
ZnSnP, 2.9 3.2
CdGeP, 3.6 3.2
CdGeAs, 3.4 3.5
CdSnAs, 3.7 3.6
AgGasS, 2.4 2.5
CuAls, 2.4 2.5
CuAlSe, 2.6 2.8
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Table II. Calculated average index and Miller’s A for thirty ternary compounds.

Compound Optical gap T = 2-; c/a o = i&z -1 average index Miligr's A
eV (10 7) (10 ) (10 esu)

ZnSiP, 2 - 2.5 67 76 3 + 1,7

ZrSiAs, 1.8 = 2.2 58 3.4 + 3.3

ZnGeP, 1.8 - 2.4 35 56 3,1 + 1.5

ZnGeAs,, 0.6 - 0,85 34 56 3,5 + 3.2

ZnsnP, 1.3 = 1.5 0 - 44 3,2 -0.3

ZnSnAs,, 0.6 - 0.75 0 - 44 3.6 + 1

Cdsip, 2.2 - 2.4 163 3.1 + 1.2

CdsiAs, 1.8 152 3.5 + 2.7

CdGeP,, 1.7 - 1.8 123 132 3.2 + 1.2

CdGeAs,, 0.4 -0.55 112 144 3.5 + 2.8

CdsnP,, 1.15- 1.5 50 3.1 - 0.1

CdSnAs,, 0.25 -0.3 43 44 3.6 + 1.2

CuAls, 3.3 39 8 2.5 + 2.4

CuAlSe, 2.5 55 4 2.8 + 4

CuAlTe, 0.9 25 0 3.3 + 7.2

CuGas,, 42 0 2.5 + 2.7

CuGasSe,, 0.85 - 1.65 40 0 2.8 + 4.4

CuGaTe, 0.8 - 1 13 0 3.3 + 8.1

CuIns, 1,2 -5 - 20 2.6 + 1.9

CulnSe, 0.85 ~ 1.05 -1 - 15 2.9 + 3.4

CuInTe2 0 .95 -6 - 8 3.4 + 6.6

AgAlS, 198 20 2.5 + 2

AgAlSe, 0.7 195 8 2.8 + 3.5

AgAlTe, 0.55 122 4 3.3 + 6.6

AgGas,, 2.7 214 12 2.5 + 2.4

AgGaSeZ 1.65 177 8 2.8 + 4

AgGaTe, 1.1 103 4 3.3 + 7.4

AgIn52 1.9 80 0 2.5 + 2

AgInse, 1.2 84 0 2.8 + 3.5

AglnTe, 0 .95 38 0 3.4 + B.4
interest. To illustrate this point we indicate in pear in binary compounds. As an example let us
Table II the calculated average refractive index consider four compounds ZnSiP,, ZnGeP,, CdSiP,,
and Miller’s A along with the optical gap and pa- and CdGeP, built up from combinations of the
rameters 7 and o, The only data used for this four bonds ZnP, CdP, SiP, and GeP., In Table
calculation are the crystallographic parameters IIT are given the mean energy gap, the ionicity,
and the covalent radii® of elements. the average polarizability, and the total acentric-

As for the mean energy gap, the ionicity f;(AB) ity of the four bonds calculated in the different

=[C(AB)/E ,(AB)]? should be seen as an intrinsic compounds. There is a slight variation of the
parameter of a bond in a solid. This interpreta- bond ionicity from one crystal to another due to
tion allows the study of bonds which could not ap- the change of the screening constant. By con-
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Table III. Parameters defining a bond in a ternary compound.

Mean energy Average linear Total
gap Ionicity polarizability acentricity
Bond  Compound (eV) =C*/E,} (4% (10% esu)
ZnP ZnSiP, 6.9 0.53 4.9 2.7
ZnGeP, 7 0.54 4.8 3
CdP CdSiP, 6.1 0.58 6.7 0.4
CdGeP, 6.2 0.59 6.5 0.6
SiP ZnSiP, 5.4 0.13 7.4 1.5
CdSiP, 5.4 0.14 7.3 1.7
GeP ZnGeP, 5.2 0.17 8.8 0.9
CdGeP, 5.3 0.18 8.7 1.1

trast the bond charge and consequently the bond
total acentricity are more sensitive to the envi-
ronment.

The above formulation gives a unified descrip-
tion of the dielectric properties of tetrahedral
solids. The only data needed for calculations are
the crystallographic parameters and the PVV
tetrahedral covalent radii of elements. The theo-
ry can easily be applied to more complicated
structures like stannite, enargite, or famatinite.
The case of defect structures which may involve
nonbounded electron pairs should be considered
more carefully.

We wish to thank Dr. R. C. Smith for drawing
our attention to this problem. We gratefully
acknowledge very helpful discussions with Dr. J.
Jerphagnon, Dr. P. Kupecek, and Dr. R. Ey-
mard.

Note added in proof. — Additional data have been
recently published on CdSnP, [J. L. Shay and
E. Buehler, Phys. Rev. Lett. 26, 506 (1971)] and
on ZnGeP, [G. D. Boyd, E. Buehler, and F. G.
Storz, Appl. Phys. Lett. 18, 301 (1971)]. The
experimental results, n(CdSnP,)=3.1, n(ZnGeP,)
=3.1, and A(ZnGeP,)=0.85+0.35, are in good
agreement with our calculations (see Table II).
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