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The Phillips-Van Vechten dielectric theory of binary tetrahedral compounds and Le-
vine's bondmharge model are formulated in terms of macroscopically defined linear and
nonlinear bond polarizabilities. This formulation allows the determination of the linear
and nonlinear optical properties of tetrahedral solids. As an illustration, the case of
ternary compounds with chalcopyrite structure is considered. Theoretical and experi-
mental results are in good agreement.

According to the theory of Phillips and Van
Vechten' ' (PVV), the dielectric constant ~ of an
elementary (A) or binary (AB) compound with tet-
rahedral coordination4 is

where

E '(AB) =B'(AB) + C'(AB)

C(AB) = 1.5e'(Z „/r„-Zs/re) exp tt- 2k,(r„+rs)],

The correcting factor D» is introduced' to take
into account the contribution of the core elec-
trons. Z~ and ~~ are the valence number and co-
velent radius, ' respectively, of element A; A~
and 4, are the plasma frequency and the Thomas-
Fermi screening constant, respectively, calcu-
lated for a free-electron gas with a density of
four electrons per atomic volume.

The polarization induced by an external field
E in such a material is therefore

3I — (2a, ) E, , E, (2)

where V is the volume of the unit cell, a, =8'/
me' andE, =me4/28'

In a very different and more classical approach,
the linear susceptibility tensor y, , ' can be cal-
culated from the linear microscopic polarizabil-
ity tensor e, , of the bond. For a bond with axial
symmetry the only nonvanishing elements of e„
are e

~~
and e ~. The calculation of the bond polar-

izabilities proceeds as follows. ' One assumes
first that the local field E&„ is constant over a
bond and is the same for all directions. Taking
then a common value W~~ for all the energies W,.
-W, in the Kramers-Heisenberg dispersion for-
mula o.'„(0)=4e'g, o Jzo,. f'/(TV, .-Wo) and in the
Thomas-Kuhn sum rule (2m/8 )Q, o(W, -~o)

3Ep~ 3 1 2

II

(4)

The polarization induced by an external field E
in a crystal with diamond, sphalerite, or ideal
wurtzite structure (which are built up from a
single type of bond) is

16 16 3EO~P = —nE„,= —(2a,)' ~ E...
Comparison of formulas (2) and (5) leads to the
following interpretation of the PVV theory: The
dielectric constant of a tetrahedrally coordinated
solid can be calculated as if each bond sees only
the applied field and has an average polarizabil
ity o.'»* =(2ao)'Eo'D»/E, '(AB) aohich is macro-
scopically defined. This is equivalent to saying
that the local field effects are automatically taken
into account by assigning to 8' the value E deter-
mined by PVV to fit the experimental dielectric
constant.

A macroscopically defined bond nonlinear sus-
ceptibility P* = P ~~* can be calculated from Le-
vine's bond-charge model. " It is found that

P* = (C*+p*)(n'/E, )',

x
( z„.(' = 1, one obtains

&
~i

= (2ao)'Eo'/ll' ~i'

z is parallel to the bond axis; 0 and i correspond,
respectively, to the ground state and to an excit-
ed state; and ( 2m/ h')W~ =(~zoo'(-~zoo(') '. o. ,
and 8'~ are defined by changing z into x or y. It
should be noted that these approximations are
very similar to those leading to Eq. (l) in Penn's
work'. It is convenient to introduce the two sca-
lar invariants associated with the irreducible
components of a', ,: the average linear polariz-
ability n = (n, ~+ 2o.',)/3, and the linear polariz-
ability anisotropy eo =(n„-n,)/3. The average
linear polarizability can now be written as
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are functions of the bond charge q =-2e/e (e is
the dielectric constant of the material). Let us
define for a microscopic dipole an analog of
Miller's" 6 that describes the total aeentricity
of the bond,

&*=0*/~*'=(&*+p*)E.'(2~.) '.
We are now in a position to calculate the di-

electric properties of a tetrahedral crystal. The
crystallographic axes are XFZ, and V is the
volume of the unit celL Let (rye)~'~ be the axes
associated with the bond s." (The variable index
s covers the different bonds of a unit cell. ) Then

x.,"' = s(x»»+x»r+xzg) =& 'Z.&.*,

BX =
g (2xzz X»» Xz»)

=V 'Q -'(3 cosmic (s) l)S~ ~

xeose, ('.
If the material has a small birefringenee then
Miller's 4 is

= 2 V'g, q,5,+ cos &,~'~ cos &,„"cos 0,»",
where we have introduced the weight of a bond,

n. = (~.*/Z.o'.*)'.
As an illustration of the above theory let us

consider the case of ternary compounds (ABC,)
with chalcopyrite structure. These compounds
are attractive materials for nonlinear optics
since one expects that they have, like binary
compounds, high nonlinear susceptibilities. '3

The birefringence is high enough to allow phase
matching'4 as has recently been demonstrated
for AgGaS~. " More than fifty ternary compounds
have been x'eported. However, high optical qual-
ity crystals are difficult to grow.

The chalcopyrite cell can be built up from two
sphalerite cells. 4 The distortion with respect to
two superposed sphalerite cells ean be charac-
'terized by two parameters 7 and o'.

~=2 c/a, o =4x--l,

where c and a are the cell parameters, x is the

where use has been made of cos0, (') eosg
xcos~,» ' =(3~3) ' « the second order in T

and o.
The PVV theory deals with the isotxopic part

of the'dielectric constant and therefore with the
isotropic part of the bond polarizability. In order
to include the anisotropic part of the bond polar-
izablllty the theox'y could be extended by defining
macroscopically the ansiotropic part of the di-
electric constant from experimental measure-
ments, as has been done for ~. Thexe is at the
moment insufficient experimental information to
allow such an extension.

In Table I we compare the theoretical refx'ac-
tive index with experimental values for nine ter-
nary compounds for which measurements have
been repox ted. The agx cement is ver y encourag-
ing. For the only matexial whose nonlinear sus-
ceptibility has been measured, AgGa8~, the
agreement is very good:

&c» =2.4&10 6 esu, d ~,»=2.5&10 ' esu.

The theory can be used in materials x eseareh to
predict those materials which are likely to be of

Table I. Experimental and calculated refractive in-
dex.

Compound +calc

ZnSiP2
Zn81Asp
ZnSnP2
CdGeP2
CdGeA82
CdSnA82
AgGa82
CuAIS2
CuAISe&

3.1
3.1
2.9
3.6
3.4
3 7
2.4
2.4
2.6

3
3.4
3.2
3.2
3.5
3.6
2.5
2.5
2.8

abscissa in units of a of the anion C in crystallo-
graphic position" d; the eations A and 8 are in
positions a and b, respectively. Equations (8)
give immediately

() 16 ( g, &~c
v ' " ' z,'(xc) E,'(ac) '

sx"' = -'(x.-x.)
= -(&6/3&) k~+ ~)&~,"+(~-~)&~,*l,
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Table II. Calt. ulated average index and Miller's D for thirty ternary compounds.

Compound
Optical gap 2 — c/a

{10 )

a = 4x -1

[10 ]

Hiller 's h,aver age index
(10 esu]

ZnS ip

ZnSiAs

ZnGeP2

ZnGeAs

ZnSnp

ZnSnAs

CdSiP

CdSiAs

CdGeP

CdGeAs2

CdSnPZ

CdSnAs

2 — 2. 5

1.6 — 2. 2

1.8 — 2. 4

0. 6 —0.85

1.3 — 1.5
0. 6 — 0.75

2.2 — 2. 4

1.7 — 1.8
o. 4 -o. 55

1.15- 1.5

0.25 -0.3

67

163

1 Z3

112

43

44

44

132

144

3 ' 4

3, 5

3.6

3 ~ 5

3.2

3.5

3.1

3.6

+ 1 p 7

+ 3 ~ 3

+ 1.5

+ 3m 2

Q ~ 3

+ 1

+ 1 ~ 2

+ 2 ~ 7

+ 1.2

+ 2 ' 8

Q. 1

+ 1 ~ 2

CuA IS

CuA 1Se2

CuA 1Te

CuGaS

CGS2
CuGaTe

CuInSZ

CuInSe

CuIn Te

AgA IS

AgA lSe

AgA 1Te

AgGaS

AgGaSe

AgGaTe

AgInS

AgInSe

AgInTe

3I 3

0.9

0.95 — 1.65

0. 8 — 1

1 ~ 2

0. 85 - 1.05

0.»

p 7

p. 55

2. 7

1.65

1.2
0 .95

55

25

1 3

122

177

103

80

38

20

'l 5

9

12

2.5

2. 5

2. 8

3 ~ 3

Z, 6

2.9

3.4

3, 3

2. 5

3I3
2 ' 5

2. 8

+ 2. 4

+ 7 ~ 2

+ 2 ~ 7

4

+ 8. 'l

+ 1.9
+ 3.4

+ 6, 6

+' 3 ~ 5

+ 6.6

+ 2. 4

+ 7.4

+ 3.5

+ 6 ~ 4

interest. To illustrate this point we indicate in
Table II the calculated average refractive index
and Miller's 4 along with the optical gap and pa-
rameters 7 and 0. The only data used for this
calculation are the crystallographic parameters
and the covalent radii' of elements.

As for the mean energy gap, the ionicity f,.(AB)
= [C(AB)/E, (AB)]' should be seen as an intrinsic
parameter of a bond in a solid. This interpreta-
tion allows the study of bonds which could not ap-

pear in binary compounds. As an example let us
consider four compounds ZnSiP„ZnoeP„CdSiP„
and CdoeP, built up from combinations of the
four bonds ZnP, CdP, SiP, and GeP. In Table
III are given the mean energy gap, the ionicity,
the average polarizability, and the total acentric-
ity of the four bonds calculated in the different
compounds. There is a slight variation of the
bond ionicity from one crystal to another due to
the change of the screening constant. By con-
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Table III. Parameters defining a bond in a ternary compound.

Bond Compound

Mean energy
gap
(eV)

Ionicity
C2/E 2

Average linear
polariz ability

(~')

Total
acentricity
(10 ' esu)

ZnP

CdP

SiP

GeP

ZnSiP2
ZnGeP2
CdSiP2
CdGePq
ZnSiP2
CdSiP2
ZnGeP~
CdGeP2

6.9
7
6.1
6,2
5.4
5 4
5.2
5.3

0.53
0.54
0.58
0.59
0.13
0.14
0.17
0.18

4.9
4.8
6.7
6.5
7.4
7.3
8.8
8.7

2.7
3
0.4
0.6
1.5
1,7
0.9
1.1

trast the bond charge and consequently the bond
total acentricity are more sensitive to the envi-
ronment.

The above formulation gives a unified descrip-
tion of the dielectric properties of tetrahedral
solids. The only data needed for calculations are
the crystallographic parameters and the PVV
tetrahedral covalent radii of elements. The theo-
ry can easily be applied to more complicated
structures like stannite, enargite, or famatinite.
The case of defect structures which may involve
nonbounded electron pairs should be considered
more carefully.

We wish to thank Dr. R. C. Smith for drawing
our attention to this problem. We gratefully
acknowledge very helpful discussions with Dr. J.
Jerphagnon, Dr. P. Kupecek, and Dr. R. Ey-
mard.

Note added in Pv oof. —Additional data have been
recently published on CdSnP, [J. L. Shay and

E. Buehler, Phys. Rev. Lett. 26, 506 (1971)]and

on ZnGeP, [G. D. Boyd, E. Buehler, and F. G.
Storz, Appl. Phys. Lett. 18, 301 (1971)]. The
experimental results, n(CdSnP, ) =3.1, n(ZnGeP, )
=3.1, and b(ZnGeP, ) =0.85+ 0.35, are in good
agreement with our calculations (see Table II).
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