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eluding strange mesons in the kernel will be to
boost the leading intercept by approximately 0.1
(for 6=0). This boost will be larger (smaller)
for 0&0 (&0).
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FIG. 2. The partial cross section os' (are} for w

+p interactions is graphed against laboratory momen-
ta Th. e unbroken (dashed) line is the one-parameter
fit described in the text. The data for 0.~+ have been
obtained by adding the two cross sections for O.z~z and
0.+z given in Ref. 5.
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A calculation of the sixth-order anomalous magnetic moment of the electron is present-
ed. We obtain a~ = 2n/n 0 32847(n/n-)2+ . 1.49(n/v)3 which is in good agreement with the
present experimental answer.

Recently an experiment' to measure the anoma-
lous magnetic moment of the electron was per-
formed with sufficient accuracy to justify a theo-
retical calculation. Several groups have pub-
lished partial calculations, "and we present here
the result for the sum of all remaining graphs.
Our theoretical answer for the anomalous mag-
netic moment through sixth order is

a, "=&n/w-0. 328479(n/n)'+1. 49(n/n)'

which is to be compared with the present experi-

mental answer' of

a, "~ = —'n/m-0. 328 479( /mn)'

+ (1.68 ~ 0.33)(n/n) s

For a review of the present status of quantum
electrodynamics see the review by Brodsky and
Drell. ' We use n '=137.03608(26).'

There are 72 graphs for the sixth-order mag-
netic moment of the electron, of which 40 are
distinct. They are shown in Figs. 1 and 2. Of
the forty graphs, the twelve involving fermion
loops (Fig. 1) have been previously calculated.
Seven of these have second-order vacuum-polar-
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FIG. 1. The twelve graphs involving fermion loops.
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ization insertions, "three have fourth-order vac-
uum-polarization insertions, "and two have
light-light-scattering insertions. ' There are 28
distinct graphs with no fermion loops, only 3 of
which have been previously calculated. '

In our work we took advantage of the fact that
some contributions canceled among the various
graphs and we therefore report here only the an-
swer for the sum of graphs 1-28 shown in Fig. 2.
Graphs 1-3 were also calculated in Ref. 6. The
appropriate factors of 2 are of course included
for the nonsymmetric graphs. In a future paper
we will present results for individual graphs and

give more details of our methods.
The method we use to evaluate the graphs is

straightforward. Almost all of the work is done

by the computer. Feynman parameters are intro-
duced in the usual way and the computer then
does all of the necessary Dirac algebra and col-
lecting of like monomials in the Feynman param-
eters using a program developed by one of us. '

The integrals over the Feynman parameters are
on an eight-dimensional simplex which we map
onto a seven-dimensional hypercube. In some
diagrams there is a trivial simplification to re-
duce the integration region to a five- or six-di-
mensional hypercube. After renormalization and
removal of infrared divergences the integrals are
all finite although the integrand has integrable
singula. rities on the faces of the cube. We experi-
mentally find a polynomial mapping to remove
these singularities and make the integrand rela-
tively smooth.

At this stage we have a choice of integration
schemes, and we chose to do straightforward nu-

merical integration using Gaussian weights and

points in each variable. This is to be contrasted
with the use of C. Sheppey's routine by Brod-
sky" ' and co-workers, which is an adaptive
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FIG. 2. The 28 graphs calculated in this paper.

Monte Carlo method that puts more integration
points where they are needed. We have not tried
their method extensively. About half of our
points are in regions where the integrand was
very small. However, Gaussian integration nor-
mally works much better for reasonable functions
if accurate answers are needed. We made sever-
al runs va.rying the points in each dimension to
test for convergence. As a typical example, we
show the results for the sum of graphs 16 a,nd 28
in Table I. We estimate our error for the indi-
vidual graphs to be on the order of 0.02 and the
error for the sum to be &0.2. As an additional
test of convergence, we have summed the results
of our numerical integrations for individual
graphs for various meshes. These sums are
1.54, 1.64, 1.67, 1.77, and 1.75, with the number
of mesh points increasing by more than a factor
of 10 from first to last. Those contributions
which we have computed exactly are not included
in these sums. The large percentage fluctuations
and estimated total error result from the 90%
cancelation between graphs. The result for the
sixth-order magnetic moment of the electron is

a,~'~ =[(1.23+ 0.2) + (0.0554)-(0.154+ 0.009)

+ (0.36+ 0.04)t(a/w)',
where the first term is our answer for graphs 1-
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Table I. Convergence of the integral for increasing number of integxation points for
graph 28 plus 2 ~graph 16. The number in column one is half of that obtained from
column two because vie only integrate over half of the hypercube. The nonuniform num-
ber of points for some of the runs represents an "educated guess" as to the beet very
to distribute the points.

Approximate number of
integration points

Number of points in each
dimension on hypercube

Coefficient of
-(n/6)'

64
103

8 xl03
4 x104

1.4 x105
2 xl0'
4 x105
7 xlo'
1 x106

1.7 xlo~

2, 22 22 22
36 3g 3p 3p 3p 3p 3
4444444
5, 5, 5, 5, 5, 5, 5

6, 6, 6, 6, 6, 6, 6

5, 5, 5, 7, 10,7, 7
7777777
6, 6, 6, 8, 12, 8, 8

8, 8, 8, 8, 8, 8, 8
7, 7, 7, 9, 14,9, 9

4.6
1.3
1.63
1.58
1.75
1.85
1.78
1.807
1.788
1.786

28, the second number is for graphs 29-31,"the
third is for graphs 32-38,"and the fourth is for
graphs 39 and 40.

Our calculation also contributes a small cor-
rection to the magnetic moment of the muon. The
sixth-order muon contribution can be written

g (6) g (6)+ (n (6) n (6))
p

~ g p g ~

The contributions to a„~'~-a,"~ have been calculat-
ed bp several groups. ' The/ give Q~ -Q~
= (20.8+ l.l) (n/)) )6.
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