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A very general Ansatz is made for the form of the dielectric response matrix e(Q, Q')
for a solid in terms of which it is possible to explicitly find the inverse matrix e ~(Q,
Q'). The various existing models of lattice dynamics may be obtained as special cases
of this Ansatz. The phonon dispersion curves for Si are calculated from a simple gen-
eralized shell model based on this theory and agree with experiment to within 20%.

The response of electrons in a solid to an external potential can be described in terms of the dielec-
tric matrix given by

where )((Q, Q ) is the generalized susceptibility matrix and e(Q) is the Fourier transform of the elec-
tron-electron interaction including corrections for exchange and correlation effects. The main prob-
lem in connection with screening in real solids is associated with the calculation of the inverse of
e(Q, Q') including its off-diagonal elements. For free electrons e(Q, Q') becomes diagonal and the
problem is trivial, whereas for tightly bound atomic electrons, one of us has shown that a factoriza-
tion Ansatz can be made for X(Q, Q') which enables e(Q, Q') to be inverted and leads to a generalized
dipole screening model. For intermediate cases, such as covalently bound solids, or transition met-
als, neither model is satisfactory. For covalent solids, the quasiphenomenological bond-charge mod-
el of Phillips' and Martin' have been used to approximate the effect of the off-diagonal elements of

e(Q, Q'). We present here a very general Ansatz which makes an explicit inversion of e(Q, Q') possible
and from which all of the above models may be derived as special cases and hence may be adapted to
calculate the electron response for almost any solid. In doing so we also provide a quantum-mechani-
cal basis for the bond-charge model and derive models which have not hitherto been employed but may
be useful in certain types of solids.
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We make the Ansatz that e(Q, Q') may be approximated by the form

&(Q, Q') = &0(Q) &Q Q + U(Q) Q Q„Q s'f, *(Q)f, (Q') exp(ig r, ) exp(-iQ' r, ,)a
$$

(2)

where o. and P run over all Cartesian indices; r, and r, . run over suitably chosen sites in the unit
cell; and these sites as well as the functions e,(Q), f, (Q), and a~s" are chosen to provide the best
representation of e(Q, Q') for the solid in question. The Bloch symmetry of the crystal requires that
Q must be related to Q through a reciprocal lattice vector, and that a s" must be a periodic function
of q, the wave vector Q reduced to the first zone. The only restriction on the sites s and s' and on
a~s" (q) is that they must be chosen consistent with crystalline symmetry. It is also convenient to
normalize the functions f, (Q) so that they tend to unity as Q-O.

It may be verified that with this approximation

& '(Q, Q') =,-„&o,o~-,—QQ„QB'f, *(Q)f,.(Q') exp(iQ r, ) exp(-iQ" r, .)S~S" (q)
8$

where the matrix

S = (V+a -') -'.

The matrix a has already been defined by Eq. (2). The matrix V is defined as

V s" (q) =g(q+H) (q+H) Sf, (q+H)f, *(q+H), —
)
exp[-i(q+H) ~ (r, -r, .)],eo(q+ H

H

(4)

the sum being over all reciprocal lattice vectors.
In order to examine the physical basis of such an Ansatz we imagine a weak external perturbation

p'(Q') applied to the crystal and examine the Fourier components of the corresponding perturbation in
the electron density, as given by

&p(Q) = [I/&(Q)][~Q,Q' ~ (Q Q )]+(0 ). (6

Using Eq. (3) we get

1 1,. f, *(Q)eo
&p(Q) = (-) 1-

(@)
&o o p(Q')-i+@„'

(
—

)
' exp(iQ r, )w„', (7)

where

we obtain induced dipole distributions on the at-
oms. For covalent solids or transition metals,
it is reasonable to suppose that both the e,(Q) and
the a 8" are necessary to approximate e(Q, Q').
If the sites s are chosen to be the centers of the
covalent bonds in a covalent crystal, then Eq. (7)
reduces to a bond-charge model (BCM) where the
w' arise from bond-charge displacements. On
the other hand situating the sites s on the atoms
themselves leads to a kind of generalized shell
model (GSM) where part of the response is diag-
onal, as in the case of a free-electron gas, and
part is due to dipolar distributions developed on
the atom sites, as in the shell model.

We may use the above formalism to obtain the
dielectric constant e „for cubic nonmetallic crys-

~u' = -i ZSas-'(q)@e'[f. (Q')/~0(4')] e~(-iQ" r. ) U(Q') ~.,
8,$'

where e, = e,(Q=O). The first term in Eq. (7) can
be interpreted as the usual electron response
given by a simple scalar dielectric function,
while the second term corresponds to the elec-
tron density associated with oscillatory distribu-
tions of dipoles centered on the sites s, with
amplitudes w' and form factors [f,*(Q)e,/e, (Q) ].
Note that, in principle, higher order multipoles
are included in this formulation.

Let us now consider various special cases. If
the a~s" becomes vanishingly small, i.e., e(Q,
Q') becomes mainly diagonal, then S„s"(q) -0
and the M

' -0 so that the free-electron screen-
ing is recovered from Eq. (7) in the limit. On
the other hand, for tightly bound solids, e,(Q)-1 so that only the second term of Eq. (7) is left,
and if the sites s are chosen as the atomic sites
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tais, where eo is finite. This is given by

e = lim1/e '(q, q).
q~0

Using Eq. (3) we get, after some manipulation,

Here

4Ve2 1
Q K+ 1/a

(lo)

— —gf, (H) exp(-iH. r, ) ', (l l)
v(H) 1

e,(H) n s

where 0 is cell volume, n is the number of sites
s in the unit cell, and the prime over the summa-
tion indicates H=O is to be excluded;

a = lime a" (q),
q~oss~

where we have assumed that the a„s"(q) may be
written as a"'(q) 5~s for cubic crystals. The
quantity a is equal to (0/e') o., where n is the
polarizability of a unit cell.

It may be shown that Eq. (10) yields the usual
Lorentz-Lorenz formula in the point dipole ap-
proximation [e, =f, (Q) = 1, s runs over atomic
sites], while for extended dipolar distributions
[e,=l, f, (H) =0 (Hgo)],

so that both classical limits are obtained. A

very important application of the above formalism
is in the calculation of the vibrational spectra of
solids. In this case U(Q') of Eq. (8) stands for
the perturbing potential due to the displaced ions
of the lattice and may be written as

y,k

(14)

(15)

where

W 8"(q)=Q (q+H) (q+H) s
' q —f, *(q+H) exp[-i(q+H) (r, -r, )].

Eo q+H
H

Using Eqs. (7) and (14) the lattice equations of motion may be shown by standard methods to be

(17)

where r~ runs over atomic sites, e is the unit polarization vector for site 4, and W~(Q') is the pseu-
dopotential form factor associated with the ion at site k. We shall not discuss here the complications
arising from nonlocal pseudopotentials. Combining Eqs. (8) and (14) we may write Eq. (8) in the form

~.' =- -(1/~,)P„,(SW') „,"e,',

where M~ is the atomic mass, t" is the electrostatic coupling coefficient between ion cores, and E is
given by the usual expression used for simple metals except that the free-electron dielectric function
is replaced by e,(Q). For nonmetallic crystals, one has to ensure vanishing microscopic electric
fields in the limit q-O for the acoustic modes, 4 which leads to the sum rule

»m Z, '"~'+ ~ ~'- SW'„" =O
O I ~ sy

(18)

for the above model, where Z~ is the ionic core charge at site k. In general this sum rule leads to a
restriction on the a ~ for which evaluation is complicated. However, evaluation is simpler in the
case of a lattice with the diamond structure if we adapt the GSM (sites s on atomic sites) to become

a = -1/( j+K),
where K, a are defined in Eqs. (11) and (12), and

~ 1 23Hz=' W(H)
exp(iH r~) z f~ (H) exp(-iH r„) .

n
e H

(2o)

Equations (15) and (17) together look similar to the shell-model equations but are in fact representa-
I

tive of a very general model. As pointed out above, keeping only c,(Q) and neglecting the a„s" leads
to the usual free-electron model, while putting e, (Q) =1 leads to vanishing E and the usual dipolar
models. Keeping both e,(Q) and the a z" leads to different models depending on our choice of the
sites s, i.e., GSM or BCM.

It may be shown that if one takes the sites s as the bond-charge sites and makes a special assump-
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W(Q) = (41T-Ze'/Qq') sin(qr, ) /qr, . (22)

The pseudopotential in Eq. (22) was chosen to
approximate best the pseudopotential for silicon
as given by Heine and Abarenkov (HA) as modi-
fied by Shaw' for which Eq. (22) provides a rea-
sonable analytical representation. The value of
r, was chosen to be 2.14 a.u. to make the first
node of Eq. (22) coincide closely with that of the
HA potential. The dispersion curves did show
some sensitivity to the choice of r, however. We
have used the most recent e(Q, Q) as calculated
for silicon by Walter and Cohen' and the sum
rule as given by Eq. (19) to determine a, and
eo(Q). The procedure was an iterative one in-
volving calculating a, from the sum rule [which
involves e,(Q)], using this and the published e(Q,
Q) to calculate e,(Q) from Eq. (2), and repeating
the procedure until self-consistency was achieved.
The ro used in Eq. (21) was chosen as an adjust-
able parameter, and a value of ~~ = 2.67 a.u. was
chosen to obtain reasonable agreement with ex-
periment. The induced dipolar distribution in
real space corresponding to the Fourier trans-
form of f„(Q)e,/e, (Q) turns out to be mainly con-
tained inside the sphere of radius r~, with a dis-
continuity at x~ and a small oscillatory tail out-
side x~. The discontinuity and oscillations are
a consequence of our simplifying assumption for
f„(Q). It should be noted, however, that the

f~(Q) are simply functions chosen to represent
the off-diagonal elements of e(Q, Q) through the
Ansatz in Eq. (2), and hence involve transitions
to excited states, so one should not identify the
above form factors with the static x-ray form
factors for the electron density.

tion about the form of the matrix a, and also cer-
tain simplifying assumptions about the form of
the pseudopotential, and the exchange and cor-
relation effects and the Q dependence of eo(Q),
one arrives at the equations of motion obtained
by Martin for his bond-charge model.

Finally, we present a calculation for silicon
based on a GSM with the sites s being the atomic
sites, where for reasons of simplicity and rapid
convergence we have taken the f„(Q) to be form
factors associated with a uniform distribution in-
side a sphere of radius r~, i.e.,

f, (Q) =3(sinx-x cosx)/x', x =pro. (21)

The a„s " (q) were taken simply as a,6„65»., and
the pseudopotential form factor taken as
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The calculated dispersion curves are shown in
Fig. 1. It may be seen that the agreement is
quite reasonable for a simple one-parameter
model. The I A modes show a remarkable lack
of dispersion which is also borne out by the ex-
perimental observations. We also remark that
the term in the dynamical matrix obtained by
eliminating w from Eqs. (15) and (17) contains a
purely imaginary antisymmetric component in
D g~~, i.e., gives rise to forces between atoms
on the same sublattice, in particular the second
neighbors, which cannot be obtained from a bond-
stretching-type interaction alone and therefore
involves bond-bending forces also.
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Fig. 1. Phonon dispersion curves for Si calculated
from the generalized shell model referred to in the
text. The experimental points refer to the data of
Dolling (Ref. 7) and the [110j TA point is from the data
of Palevsky et al. (Bef. 8).
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