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Synchrotron radiation has been used to measure the reflectance spectra of KCl, KBr,
RbC1, CsCl, CsBr', CaF2, SrF2, and BaF2 for photon energies 6&~ &36 eV at tempera-
tures 90 &T &400 K. Excitations of both valence and core electrons show sharp structure
and strong 1' dependence. Analysis of the data in terms of excitonic and interband transi-
tions from core states is made with regard to T dependence, crystal structure, and
chemical composition.

Our understanding of the electronic band struc-
ture of ionic crystals is not as advanced as for
many other solids, even though the alkali halides
were among the first materials studied in solid-
state physics. This situation arises because the
large energy gaps of these crystals place their
fundamental absorption spectra in the vacuum
ultraviolet, a region not easily accessible for ex-
periments. This paper reports the normal-inci-
dence reflectance spectra of several ionic crys-
tals for photon energies 6&5~&36 eV and tem-
peratures 90 & T &400 K. Low-v. ' measurements
beyond 12 eV, the transmission cutoff of LiF
windows, were made possible for the first time
by the use (without windows) of synchrotron radi-
ation as a light source. A number of new struc-
tures have been observed, particularly at low T.

Synchrotron radiation from the 240-MeV elec-
tron storage ring at the University of Wisconsin
was used. The experimental system' employs
the rotating-light-pipe scanning-ref lectometer
technique' to obtain detailed reflectance spectra
directly. Before measurement, bulk samples
are heated to 400 K in the ultrahigh vacuum to
remove absorbed gases from the surface.

Figure I shows the reflectance spectra of KCl,
KBr, HbCI, CsCl, CsBr, CaF„SrF„and BaF,.
Correction was made for second-order light from
the grating. Reflectance shifts separate the spec-
tra at different temperatures, placing the 90-K

curves above and the 400-K curves below the
300-K measurements. The wavelength resolution
is AA. =5 A.

The spectra have been divided by dashed verti-
cal lines into three regions. Structure in region
I arises from electronic excitation of the valence
bands, which originate predominately from the
filled p states of the negative ions. Region II be-
gins with the onset of excitations from flat core
bands which lie below the valence bands and or-
iginate from the p states of the positive ions.
This core threshold may be determined for K+(3p)
and Cs+(5p) at 19.9 and 13.2 eV, respectively,
by observing which structures are insensitive to
changes of the halide. Atomic x-ray levels' help
to determine the onset in the other crystals. Re-
gion II, several eV wide, is composed of very
sharp peaks (width &0.2 eV) which also character-
ize the core threshold. Their width is resolution
limited. %e believe, in agreement with others,
that these sharp peaks correspond to core ex-
citons. The present analysis uses this interpre-
tation. It should be noted, however, that the ex-
perimental results do not exclude the possibility
that the sharp peaks are caused by interband
transitions. An abrupt change to much broader
Dlunl at X3. The A, ' peak may be the first excit-
ed state of the A, exciton. 'o

most likely arises from interband transitions be-
tween core and conduction bands.
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severa n the far ultraviolet. Heflecn the ar u . ctance shaftsseveral ionic crystals in the ar ue reflectance spectra of severa1. Normal-incidence re ec
the 300-K spectra.d 400Q,S) separate the 90- an

core-exciton peaks in re-p
gion II are i en'd tified as follows. A, an

and & are separated by ababout 0.8 eV,
( )the spin-orbit (SO) sp&jttjng ot' the
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level, Ag Rnd A2 have R negative temperature
shift (a few tixpes 10 ' eV/K). In contrast B, and

82 have positive tenlperRture shifts. Thus, A,
and A.2 Rx'6 the 80-split cox'8 excltons RssoclRted
with the miniDlum Rt I ~ of the coQductloQ bRDd

formed from Rb'(5s), while 8, and 8, are the
correspondi~ M spbt excitons associated arith
the higher lying Rb'(4d} conduction-band mimi-
at I,. The A, ' peak ~y be the fix st excited
state of the Ay exclton.

IQ KCl ' ~d Kax ' the 80 splitting of the
K (3p) core level (0.27 eV in the atom) induces
R corresponding splitting& ' resolved Rt low T&

into two cox'e excitons A, Rnd A.~ associated with
the conduction-band mlninlum Rt I j. ' ' The ob
served intensity ratio differs strongly fx om the
xatio 2:I expected from the statistical weight of
the (j= ~):(j= —,') components. However, exchange
interRctlon bet%'een electx'on RQd hole cRD gx'6Rt

ly suppx'ess the fix'st exciton peak relative to the
second fox' sIQ811 K) splittings This IRy cRQse
the ratio I:I in Kax. IQ KCl RQ additional effect
contributes. The stx'ong valence excitation peak
Rt I8, 5 8V in ~r shifts to 19.5 6V in Kcl and
ovex'laps A.

& considerably» broadening Rnd sup-
pressing it by lifetime effects.

The shRrp peak 8 ~ Rt 21.25 87 in KC1 and KBx',
hRs been Rssigned ' ' to the cox'6 exclton Rssoci-
ated with the K+(M) conduction-band minimum at
X,. It shifts to slightly lower energy upon cool-
ing, Rs do 8, Rnd B~ in Rbcl. The lack of a M
splitting of the I exciton has been attributed' to
R short lifetime which supposedly x'esults from
its ener~ degene~cy With cox'8 interband tran-
sitions. However, stronger lifetime bl oadening
of B2 than A, and A2 is not observed; the widths
of Rll three ax'6 compRX'RM6 Alternatively~ we
suggest that exchange inter'action may suppress
8, so that only 82 is observed. Since A, is stiB
obsexved while B, is not, it appears that ex-
chRQge effect8 Rx'8 sDlRQer at I, thRD RtX IQ KCl
Rnd KBX', The shouMex'A~ cRQDot be the DDSsing
B& peak becRuse exchange hRX'dly Rffects the 80
splitti~ of coxe states. "%'6 consider A, ' to be
the first excited state of the A, exciton or the in-
terband edge at I

ID the sixQple cubic Cs halldes, the Minima of
the Cs+(6s) and Cs+(5d) conduction bands are at
l", and I'», the former slightly (&0.5 eV) below
the latter. '6' " The SO splitting of the atomic
Cs{5p) level is 1.7 eV. Hence, we consider (A„
A.,) and (&„8,) to be the SO-split core-exciton
pairs associated ~th X', and C», re~ectively.
The separation bet%'een these XMDima xnust be
smallex' in CSBr than in CsC1, so that in Csar

Rt lo'vp Tq Bg appeax'8 Rs R Darrow 8AOQlder OII

Ag, The AI peak xnay RgRin be Rn excited stRte
of the A, ezciton.

ID the Rlkaline-earth fluox'ides, the ox'dering
of the conduction bands is uncertain. ' The 80
splitting of the Ba(5p} atomic level is 2.0 eV but
for Sr(4() and Ca(3p) it is negligible. In BaF„
(A„A,) and (B„B,) may be SG-split exciton pairs.

In re~on IH the crystals with the NRCl struc-
ture (KCl, KBr, and RbCl) show broad peaks
fRIx'ly evenly spaced ID ener~. KQ .contx'ast~ the
cxystals with the CaF, structure (CaF2, SrF„
and BaF,) as well as those with the CsCl struc-
ture (CsCl and CsBr}"show a strong doublet
about 4 8V wide dominating region III, with a
structure between the doublet and weak struc-
tux'es on eithex shouldex' at low T. The positive
ions in both the CRF, and CsC1 structures have
the sRme eightfoM coordination of QeRx'est neigh-
bors (negative ions), in contrast to the sixfold
coordination in the NaC1 structure. %8 thus ob-
sex've R cox'x'61Rtion of the core interband Rbsorp-
tion spectra with %8 spatial coordination of the
positive ion Rnd not with the shape of the Bri.ll-
ouin zone (which is identical for the NaCl and
CRF~ stx'uctures but different for the CSC1 struc-
tux e)."

These spectra Sho%' vex'y dramatic T depen-
deBce IQ Rll pRX'ts of the spectrum~ fox' exanlple
Rt 14 67 ID Kcl~ Rt 6.7 eV IQ KBr~ Rnd Rt 17 Rnd
26 ev in BRF2. The T dependence is even stron-
gex' than the "giant temperature dependence"
seen in photoemission from the silver halides. 2

There the temperature sensitivity was attributed
to R modulation of the valence-state enexgies by
the thermal vibration of the ions. Similar effects

the coxe states should be small. Thus the
strong 7 dependence of core interband structox'88
suggests that in these crystals the conduction-
band stRtes Rx'8 Rlso sensltlve to lattice vibra-
tions. This i.s plausible because the conduction-
bend states retain R considerable atomic chaxac-
tex' Rnd localization of their wave functions on
iODiC Sites.

The sharp peaks IQ region II, considered cox'8
excitons, have sod& interesting properties.
Their strength increases with heavier positive
lons, They Rx'6 stx'ongest ln the cx'ystRls %'ith the
CsC1 structure. The A, I cox'8 excltons in CsC1,
Csar, and BaF2 are much larger than even the
excitons Rt the absorption edge. The T depeD-
dence of the core excitons is just as striking as
that of the mlence excitons.
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of CuFe in the Kondo State*
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The effects of single Fe impurities on the Cu-host NMR in CuFe have been measured
over a wide range of Fe concentrations up to 45 kOe at 1.65 K. The additional impurity
d-spin conduction-electron spin-correlation effects on the host NMR linewidth originally
noted by Golibersuch and Heeger have been shown to be the result of single Fe impurities
in the Kondo state; these effects are destroyed at lower applied fields with increasing Fe
concentration as a result of Fe-Fe interactions.

There has been a considerable amount of work
on the Kondo problem in order to determine the
basic properties of an isolated "magnetic im-
purity" at temperatures below the Kondo tem-
perature, T„. The most thoroughly studied Kon-
do system has been that of very dilute solutions
of Fe in Cu, on which a wide variety of micro-
scopic and macroscopic measurements have been
made. ' The prime difficulty in interpreting the
results of many of these experiments has been
the separatio~ of the single-Fe-impurity contri-
bution from the contributions of pairs and clus-
ters of Fe atoms. Of particular importance is
the possible existence of a "quasiparticle" spin-

polarization cloud surrounding an Fe impurity in
the Kondo state. The existence of a relatively
localized ((9 A) spin-polarization cloud was in-
ferred by Golibersuch and Heeger' (hereafter
referred to as GH) on the basis of observed non-
linearities in the Fe-impurity contribution to the

Cu-host NMR linewidtbs. ' Correlating this
data with existing Mossbauer and susceptibility
measurements, they concluded that additional
correlations exist between the impurity d-spin
and host conduction-electron spins, which are
destroyed at magnetic fields much less than kTK/
Ij. ~ and temperatures much less than TK. How-
ever, the very detailed magnetization measure-
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