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&& 10 ' which is roughly the threshold for the
curves in Fig. 2. Note that the average error
field is -0.10 of the peak error field. As the
error field increases, the measured plasma loss
increases as (B)"for the I, =4000 A case which
is predicted by Eq. (1). At large error fields
the observed loss in the sheared fields approaches
the loss for the unsheared case. To explain this
behavior we assume that electric fields again de-
velop parallel to the field lines at large field
errors and cause increased ion loss. The plasma
loss was observed to increase as the background
pressure was decreased at zero applied error
and zero Bz. This is in agreement with this
model for loss due to field errors and is differ-
ent from the case" for support induced loss in a
sheared field where decreasing pressure de-
creased the hoop loss.

The results of these experiments and their in-
terpretation indicate that the observed anomalous
loss of plasma to the internal hoops of existing
multipoles can be caused by small (&1%) field er-
rors. Since present constructiori techniques can-
not produce a magnetic field of arbitrarily small
field errors, a toroidal field can be used to re=
duce the effects of the errors to a tolerable level.

The authors wish to thank J. Adney for the de-
sign and construction of the toroidal field winding.
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The thermodynamics of the Heisenberg-Ising ring is reduced to the solution of a sys-
tem of recurrent nonlinear integral equations.

The energy levels E of the Hamiltonian'

N

H = Q Sn +Sn+ 1,x+Sn, ySn l,y+
n= 1

+b,(S„S„.. .-g),

Nk =2sh. + Q gas, a=[1 Mj,
8~x

where the pseudomomenta k and antisymmetric
phases g„s are parametrized' in terms of auxil-
iary quantities y

with S„=—S„are given by the coupled equations
(using Bethe's notation)'

E = Q (cosk„-b,),

cot&k ~ = coth&4 tangly, 5 = coshC & 1,

cote)~a = coth4 tana(p ~ —ps),

(j &k &2m, -n &g s &w, s&y &n-''.
(5)

(6)
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The integer M is related to the magnet1c spin
component S,= &N-M. So far the appropriate
sets of integers A. are only known for the restrict-
ed class of states for which the momenta are
real number s.'

Applying Bethe's method, ' it can be shown in
the limit of large N that the roots of Eq. (3) in
the complex plane of parameters y „are grouped
in various strings characterized by a common
real abscissa cp and an order n. Let us call such
a string a comp/ex' C„(y). We have that C„(y) is
comprised of the set

Nf„((p„;)=2~4„;+Q Q[nmp) f~{(p„;-y,).
m, P j= 1

PE=1&2&3& ee ~
& L=1&2& e ~ ~ &v (10)

with f„(y) a continuous odd function defined by

where 6& is an exponentially small quantity:

In(1/a „)= O(N).

Suppose we have v„complexes of order n with
real abscissas y„;, i = [1,v„]. The asymptotic
form of the system (3) can be written as a sys-
tem of equations for the real y„;:

y ~
——q +i p, 4+id p4,

y, = -(n-1) -(n-3), ~ ~ ~, n-3, n-l,
tang„(y) = -coth-,'nC tan-,'cp,

(8) and [nmp] the completely symmetric symbol giv-
t en by

1 p=tm+nt,
[nmp]= 2 tm-n t

& p&m +n, m+n+p even,
0 otherwise.

By uslQg a continuity pr1Qclple 1Q 6 and making a QoQcI'osslng hypothesis fol the I'eal Q„ the study
of the limit 6- ~ on the wave function of Eq. (10) permits us to reach the following conclusion: For
each order n, the quantum numbers J'„, are integers (or half-integers) forming an increasing sequence
on some lattice interval depending on n. This fact allows a fermion-like description of the set of
bound states or complex of each order.

Following the method devised by Yang and Yang' for the thermodynamics of the one-dimensional bos-
on system, we express the energy and entropy of the infinite ring as a functional of the density of com-
plex C„(y): "particle" density p„(y) and "hole" density P„(p). Equations (10) simply give the relations

&n+pn=dn*(pn+ x+pn-i)~

with the convention P,(y) = 2&5(y) and the notation

(dn*p)(p) =(») 'A, dn(p-0')p(0"')dy'

The elliptic Jacobi function' dn(y) has the periods 2n and 4iC. In the limit 6-1 (4 -0), it is sufficient
to replace dn(y)dq by

(coshgE&) '~2wdx, x = (p/4.

%e flQd that the energy per site 18

E/N =E,/N+sinh4 J, dn(y)p, (y)dy,

where E, is the energy of the antiferromagnetic ground state, ' and the entropy per site is

&/N = 2 J, d9 t(p. +P.)»(p+P.)-p. inp. -P.lni.].
n&0

Minimizing the free energy

(14a)

with the constraint,

o =S,/N =-', -m/N,

we obtain the equilibrium density of the complex in the form

&.(v) — ~.(v )
1+exp[a„(y)/T]' " 1 p+ [e-xe„(y)/T ]

{18)
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where the pseudoenexgies e„(y) are given by a recurrent set of nonlinear integral equations:

e„/T =dngln([1+ exp(e„, ,/T)] [1+exp(e„,/T)])), n &1,

&,/T = dn [in[1 + e xp(e, /T) ]]. (T-' sinhC )dn.

These equations must be completed by the following asymptotic condition:

lim T 'e„(y)/n =a&0.
n ~'o

(2o)

(21)

This bkely determines the whole set of e„as functions of y, T, and X. The parameter X mill be deter-
mined by the magnetization constraint.

Now the quantities x„=p„+p„are given by

I 8 E
+n +

271' slnh4 8T. T (22)

the free energy per site is

+w—=~—
2 f dpdn(cp) in[1+exp(e, /T)]+oiT; (23)

and the magnetization per site is

o =(1/2&T)Q dy dn(cp)(Bt, /BA)[1+exp(-e, /T)] '.
The relation BE/BAI=0 o.r

~T = B(E/V)/Bo i, =H,

(24)

(25)

permits us to interpret XT as the magnetic field II, in presence of which the magnetization has the val-
ue 0.

The study of the Ising limit (6- ~, b, /T finite) provides a check of the calculation. The recurrence
relation (20) can be solved in this case and leads to the correct thermodynamic functions of the Ising
model in one dimension. In the zero-temperature limit, T =+0, the results of Qriffiths and Yang' are
obtained. The limiting le„l can be interpreted as an elementary excitation energy above the Fermi
level Ilo. In particular the minimum magnetic field II, giving a nonzero magnetization is

limH, =H, =2sinhC dn(~),
Q ~ Q

(26)

which is precisely the value of the energy gap" between the antiferromagnetic ground state and the
first excited state S,= 1.

In the limit T =+0 and 0 =+0, we obtain

e„=H,n-H„n&1; -e, =(energy of spin wave S,=l)-H, . (2V)

Finally the limit 6 =1+0 can be easily written by making the substitution (14a) in all the equations;
for instance Eq. (20) becomes

=4J' „~,
"',

~&nI i+exp( "''*'-) i+exp( " '"'
) (28)

which is equivalent to the set of equations recently found by Takahashi' in his solution of the same
problem for 6 =1.
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tinued interest in this work and many fruitful discussions.
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It is shown that, for a Tokamak plasma with fixed boundary, the toroidal contributions
to the shear are sufficiently important to modify the j i~-kink instability. Assuming that
P is small and using the energy principle, 5W is calculated to order (r/R) 8 and the toroi-
dal corrections are shown to change the sign of the destabilizing term. One consequence
is that the range of rotational transform angles for which the m =1, v=1 instability will
occur, when the shear is weak, is below the Kruskal-Shafranov limit and not above it.
Also, the new terms have an important stabilizing effect for the screw pinch.

In the studies of the magnetohydrodynamic
(MHD) stability of Tokamak plasmas with con-
ducting-wall boundaries, ' ' use has been made of
the energy principle and also of a series expan-
sion taking the aspect ratio r/R as a small pa-
rameter. 5W has been calculated to order (r/R)'.
To this order, the only possible destabilizing
terms are proportional to the pressure gradient;
these appear if ~dp/dr~ Z(r/R)'(B'/r), that is, if
P- (r/R)' Becaus.e B~/Bs -R/r, the destabilizing
term due to j[l, which is present in linear-pinch
theory, is of higher order. The only toroidal
contributions related to j~~ O((r/R)') arise from
the part of j t~

associated with the nonzero diver-

J'

5W = f,'nrdr[()B„'-+ 5Be'+ (rktt B$„'/m)&j g/dr],

gence of j~ and are proportional to dP/dr (The.

same symbols and coordinate system are used
as in Ref. 1. In particular, 8 and y are the angu-
lar coordinates in the poloidal and toroidal direc-
tions, respectively. The subscripts, ~~ and &, de-
note vector components parallel to 8 and Vp x B,
respectively. )

Previous studies of the jl~-kink instability have
considered only the linear pinch and the linear
stellarator. For the linear pinch with dp/dr =0
and assuming Bs/B, -r/R (giving field compo-
nents similar in magnitude to those of a Toka-
mak), 5W, for orders up to (r/R)' and after min-
imizing with respect to the 8 and z components of
the plasma displacement $ exp[i(m() —k, )]z, is

where k~~8 = (m/r)Be k, B,. The t-hird term is the only term that can be negative and wrongly suggests
that large radial gradients in j„must be destabilizing. (This mistake was made by Kadomtsev and Po-
gutse. ') In fact, on substituting for M„and 5B& and integrating the 5Ba' term by parts, assuming per-
fectly conducting plasma exists at all radii out to the conducting wall, most of the dj ~, /dr term is can-
celed and 6W reduces to'

5W = fanrdr((k~~'B'/m')[(m -1))„a+r'(8&„/Br)']-4k~,BBak,'r$„'m '). (2)

k. is O(r/R) and hence, for instability, it follows that k~~ must be positive and O((r/R) ). (This choice

of k~~ is possible if the shear is assumed weak. ) The net destabilizing term, the last term in the square

brackets, is then O((r/R)6). It is thus small and is not proportional to dj„/dr. For unfavorable shear

conditions, such as a maximum in the rotational transform as described in Refs. 5 and 11, there will be

instability with growth rate O((r/R)'(B'/p)'~'), where p is the plasma density.
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