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lations are a useful spectroscopic tool even in
cases where the decay is to a state of nonzero
spin. Plans to extend measurements of this kind

to other highly excited states produced in heavy-
ion-induced reactions are under way.
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(1)

(2)

Here

A new model is described for the interaction between a moving charged particle exe-
cuting any two-dimensional motion and an infinite, homogeneous, linear dielectric. The
model is based on the exact solution of the self-consistent integro&ifferential equation
of molecular optics. The main results are illustrated by application to the Cherenkov
effect.

Consider first a particle of charge e that moves on a trajectory r = r, (t) in the plane z = 0 in vacuo.
The Fourier frequency transforms [with kernel (1/2n) exp(i~t)] of the electric and the magnetic fields
that are generated by the particle may readily be derived by the use of the retarded potentials. It was

shown by Asby and Wolf' that in each half-space z ~ 0 the fields have the following angular spectrum
representation:

E("&(r, &u) = ff '„e("&(p,q; o&; ~~) exp[ih(px +qy + mz) ]dpdq,

H("& (r, cu) = ff „h("&(p, q; &u; ~~) exp[ih(px + qy + mz) ]dpdq.

h = 4)/c,

+(1-p'-q')"' if p'+q' ~1,

+i(p'+q'-1)"' if p'+q'~ 1;

and the complex spectral vector amplitudes are given by

e "' (p, q; u&;~) = s'& x[s" xf(p, q; u)) ]

h "&(p q (u ~~) =-s '& xf(p, q; o&),

with

(3)

(4a)

(4b)

(5)

(6)

f(p, q; o&) = (e/cm)(h/2v)' f „V(t') exp(i[u&t'-h(px, '+ qy, ')]}dt'. (7)

In Eq. (7) x, ', y, ' are the coordinates and V(t') the velocity of the charged particle at time t'; c is the

speed of light in vacuo. In (5) and (6), s('& are the unit vectors (p, q, +m); the positive or negative

sign on f(' and in +m in (1) and (2), and the symbol & or & in the arguments of e("& and h("&, are taken

according as the field point r is in the half-space z &0 or z &0, respectively.
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EqllRtiolls (1) Rlld (2) RI'8 BXRc't 111ode expR11sions of tile fields. ERcll equR'tloI1 expl'esses 'tile F0111'181

frequency transform of the fields as a superposition of plane waves, all of the same wave number A

= cu/c appropriate to the particular frequency component &u of the fields. Each mode is labeled by the
pair of parameters p, q and the frequency v, and consists of a plane wave

e~"~(P, q; e; &) exp[i@(px+qy+mz)] if z &0,

e& "& (p q (o; «) exp[i'(px + qy-mz)] lf z «0.

II1 view of tile deflllltloll of m [Eqs, (4)] we see tllRt, lf p +g ~ 1 'tile wRves Rx'8 ordinary llolnogeIleous
waves propagated away from the plane of motion of the particle, and that if p'+q~ & 1 they are evanes-
cent waves propagated in directions parallel to the plane of motion of the particle (z = 0) and decaying
exponentially in amplitude with increasing distance Iz I from that plane. It may readily be shown by
examining the asymptotic behavior of (1) and (2) as kx- ~ in any fixed direction that only the homoge-
neous waves in the angular spectrum give rise to radiation.

Suppose now that the charged particle executes the same motion in an infinite dielectric, which we
assume to be linear, homogeneous, isotropic, and nonmagnetic. Then according to molecular optics, '~
tile Rvel'Rge effec'tive fields E (r (d) Rnd H (r (d) Rt 'tile polllt I' 111 el'tllel' of 'tile 'two llRlf-spRces 8 & 0 oI'
z &0 may be shown to satisfy the equations

E'(r, ~) = E~"~ (r, ~) +N ~I(~)fv & v x [E'(r', ~) G ( I
r-r 'I ) ]d'&', (8)

H'(r, cu) =H~ "l (r, (u)-ikNO((u) fv x[E'(r', u)) G (I r-r'I)]d'I", (9)

where the integration extends over the two half-spaces z &0 and z &O„except for a vanishingly small
sphere centered OD the field point at r. In these equations E(") and 8(") are, of course, the vacuum
fields, given by Eqs. (1) and {2); N is the average number of molecules per unit volume; u(cu) is the
average polarizability (at frequency co) of a molecule; and

G.{I; r- I) = Ir--r-
I 8~('uIr=r- I)

is the outgoing free-space Gl een s function.
Now according to a mathematical lemma [Ref. 3, Eq. (11) of Appendix V]„ the integral in (8) may be

rewritten as

fv XVX[K'(r', (d) 6 (I r-r'I) jd'I" = VXVX fE'(r', Go) 0 (I r=r'I)GPt'-(81r/3)E'{r, (d).

On the other hand one can show that in the integral in (9) the operator Vx may be taken outside the in-
tegral sign. Further, one has the Lorentz relation between the effective electric fieM E' and the mac-
roscopic Maxwell electric field E~ "» in the dielectric:

E'(r, co) = E&'& (r, rv) +(4II/3)Nu((u)E'(r, (u). (12)

Since the dielectric was assumed to be nonmagnetic, the effective magnetic field is equal to the mac-
roscopic Maxwell field H~"» in the dielectric:

H'(r, (u) =H~+{r, u)). (13)

Finally, we also have the Lorentz-Lorenz relation connecting the molecular polarizability per unit
volume, Nn, with the refractive index m of the medium:

[n'(cu)-1]/[n'(cu) + 2]= (4II/3)Nn(cu).

Using Eqs. (11)-{14),Eqs. {8) and (9) may be rewritten as the following relations between the Maxwell
vacuum fieMs and the fields in the dielectric:

E'"'(r, ~) = —E'"'(r, ~)+—, «« fE'"'{r' ~)G (lr-r'I)d'~'1 n'(ru)- I
n, ' 4II n'(u)) ld

H&" (r, (u) = H~ "~ (r, (u)-(ik/4') [n'((u)-1]v xfE~+ (r', ~)6 ( I r-r '
I )d'r'.

Equation (15) is an integro-differential equation for the Maxwell electric field in the dielectric in
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terms of the Maxwell vacuum electric fi.eld. We have succeeded in obtaining the exact solution of Eq.
(15), and we will describe in another publication the technique we used. Here we only wish to report
the physical implications of the solution. For this purpose we represent E ') (r, cu) and H('& (r, u&) as
angular spectra of plane waves, all with the wave number n(e)h =n(~) e/c appropriate to waves of fre-
quency m in the dielectric. In particulax', the representation of E " has the form

E('& (r, e) = JJ e(') (p', q'; u); ~() exp[in((u)h(p'x +q'y + m'z)]dp'dq'.

p -p'=p/n((u), q-q' = q/n(te). (18)

Moreover, the transformation law for the vector
amplitudes [e(" —e(@]is of a very simple form
[given by Eqs. (21) below].

We note that (18) implies that for correspond-
ing modes~

0 0 1

qm =0,

m

which shows that the unit (real or complex) vec-
tors (p, q, m) and (p', q', m') of corresponding
modes are coplanar, with the normal to the plane
of motion of the particle (the plane z = 0). If the
corxesponding modes are homogeneous, i.e., if
p +q ~1 and p' +q" ~l, then m =cos()„, m'
=cosO„, where O„and O„are the angles which
the xespective directions of propagation of the
waves in eacuo and in the dielectric make with
the normal to the plane of the particle motion
(see Fig. 1). Equation (18) together with Eq. (4a)
and a similar formula for m' imply that for cor-
responding modes

Here m' bears the same relation to p' and q' as
m bears to p and q [cf. Eels. (4)]. The solution of
the integro-differential equation (15) then implies
the following: The field E(') (r, &u) ~n the dielec
telic is obtained from the vacuum field E(" (r, &u)

by a transformation in which each mode (p, q, ~)
of the vacuum field is transformed into one and

only one mode (p', q', u&) of the field in the dielec-
tric, saith

p'+ q' '(n(u)

will be transformed upon interaction with the di-
electric into homogeneous modes (p" +q" ~ 1).
If n(m) & 1, the domain (22) is seen to include
evanescent modes of the vacuum field, namely
those modes labeled by p, q, cu, where

(p, q,-m)

(v)
II

(v)
II

p,q, m)

( p', q,'-m') (p,'q', m')

ply that for corresponding modes,

e ii
) slnO~ eg sln2O~

e ii~") slnO„e, ~") sin2O,

7hese relations are of the same mathematical
form as, but simpler than, the Fresnel formulas
for refraction and reflection (Ref. 3, Sect. 1.5.2).

The results expressed by E(ls. (18) and (21),
which are exact within the domain of classical
electrodynamics, expxess basic laws of interac-
tion between the vacuum field of R chRx'ged parti-
cle executing any two-dimensional motion, and
an infinite dielectric.

Several interesting consequences may readily
be derived from these laws. We see from (18)
that all those modes of the vacuum field for
which

The relation (20), together with the complanarity
condition expressed by (19), is formally identical
with the late of ref~action (Ref. 3, Sect. 1.5.1).
Actually the analogy with the problem of refrac-
tion goes further. If we resolve the vector am-
plitudes e~ "~ and e~") into components parallel
and perpendicular to the plane containing corre-
sponding wave normals (p, q, +m) and (p', q', +m'),
then the solution of E(I. (15) may be shown to im-

PIane of motion
of charged particie

FIG. l. Illustration of the law of interaction between
a moving charged particle and an infinite dielectric.
Upon interaction, each (p, q, co) mode of the vacuum
field generated by the moving particle ls transformed
into a (p', q', ~) mode of the field in the dielectric,
where p' = p/n(u), q' = q/tt(&u). The components of the
electric field amplitudes are transformed according
to Kqs. (21). (Only the case when both the modes are
homogeneous is illustrated by the figure. )
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These evanescent modes will, therefore, upon interaction with the dielectric give xise to radiation.
In particular consider a charged particle moving uniformly with speed V in the x direction. From (5)
and (7), the spectral vector amplitudes of the vacuum electric field that the charge generates are
readily shown to be given by

e ") (p, q; u; «) = (he/2&c Vm)s(') x'[s(' x V] 5{p-c/ V) (24)

where 5(x) is the Dirac delta function. We see that in this case the parameter p has the sharp value

p =pa= c/V-

but q takes on, of course, all real values. Since the speed V is necessarily smaller than the vacuum
speed of light c, p, exceeds unity, so that all the vacuum modes are now evanescent. The condition
(23) for conversion of some of the evanescent modes into homogeneous ones upon interaction with the
dielectx'ic now becomes

1 «(c/V)'+q' «n'((u).

The first inequality is automatically satisfied because c/V&1; the second will be satisfied for some q
values if and only if (c/V)'&n'(u&), i.e., if

V& c/ n((u) -=v(u)),

where v(cu) is the phase velocity of the medium for frequency ~. It follows that if the velocity of the
particle exceeds the phase velocity v(&u) in the medium, those evanescent modes of frequency + of the
vacuum field for urhich q lies in the range

-n((u) (I-[v((u) /V]'P' - q -+n((v) (I-[v((u)/V]'j"'

(and for which p has, of course, the sharp value p, =c/V) teil/, upon interaction neith the dielectric,
give rise to radiation. The radiation field in the dielectric will then, in view of (18), be created by
homogeneous plane waves (p', q', ~), where

p'= v{(u)/V, -(1-[v((u)/V]'P" «q' «(I-[v(~)/V]')"'.

(28)

(29)

The first relation of {29) implies that the wave
normals of all the homogeneous waves of frequen-
cy x in the dielectric that form the radiation field
lie on a cone with semi-angle n = cos '[v(~)/V]
about the dil ection of propagation of the pax'tlcle.

Equation (27) is precisely the condition for the
generation of Cherenkov radiation, ' and it is
cleax' that the application of the general results
repox'ted in the earlier part of this note would
lead to the full description of the Cherenkov field,
both above and below threshold.
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