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The energy dependence and surface geometry of an optical-model equation with a non-
Iocal potential are compared with corresponding properties of optical-model equations
with local and velocity-dependent potentials which are used to generate approximate so-
lutions to the nonlocal-potential equation.

fined by the boundary conditions

lim e"""f,(k, r) =1;

these solutions satisfy

f (k, r) =f, *(k,r).
We define a radial flux'

S(k, r) = (a/2m')

In a recent paper, ' Scherk has proposed an ef-
fective-mass equation that is suggested to be
completely compatible with a nonlocal-potential
equation used by Percy and Buck and Pereys in
their neutron optical-model studies. Scherk has
also stated that the energy dependence and sur-
face geometry of a local potential used by Percy
and Buck to generate approximate solutions to
the nonlocal equation is unphysical. We disagree
with these statements, and in this note we show
that the Percy-Buck local-potenti. al approxima-
tion. is substantially correct. In particular, the
surface properties of the Percy-Buck approxima-
tion are almost identical to the surface proper-
ties of the original nonlocal equation. The sur-
face properties of the effective-mass equation
differ from those of the nonlocal equation and the
local-potential approximation.

Fiedeldey' has already shown that the Perey-
Buck local approximation is a good one in the
neighborhood of the nuclear surface, and our
statement to this effect is by no means new.
However, more recent work' ' on the properties
of nonlocal and local equations can be applied to
deli. neate the differences just mentioned in a sim-
ple manner, and the main purpose of this note is
to illustrate one aspect of a method for systemat-
ically studying the differences between nonlocal,
local, and velocity-dependent equations. While
we restrict this discussion to s-wave scattering
of neutrons on Ca for purposes of compar ison
with Ref. 1, the method used is reasonably gen-
eral and can be applied to most short-range, non-
local or velocity-dependent interactions.

We consider the s-wave radial equation for a
nonlocal potential:

(2)

by analogy with the flux for a one-dimensional
Schrodinger equation. It follows from Eq. (1)
that

S'(k, r) = (2/h) f V(r, s) Im[p(k, r, s)]ds,

where

p(k, r, s) =f (k, r)f,(k, -s)

is a radi. al mixed probability density; and from
the boundary conditions (2) that

S(k, r) = f—f——V(s, t) Im[p(k, s, t)]dtds. (7)
Sk 2

The radial flux satisfies

S(k, 0) =S(k, ~) =kk/m,

as is evident from Eq. (7) and the symmetry of
the nonlocal potential. Equation (8) is the radial-
equation analog of the statement that real, sym-
metric nonlocal potentials conserve flux globally.
In general, S(k, r) is a function of both k and r;
but in the local-potential limit, S(k, r) = 8k/m and
S'(k, r) =0 for all k and r. Real local potentials
conserve flux locally whereas real, symmetric
nonlocal potentials do not. This is a basic differ-
ence between nonlocal and local potentials, and
it is convenient to define a relative radial flux
J'(k, r) by

k u" (k, r)+ f V(r, s)u(k, s)ds =Eu(k, r) (1).
Throughout this Letter a prime will indicate dif-
ferentiation with respect to r. The nonlocal po-
tential V(r, s) is taken to be real and symmetric
and F. is related to k by F. =5'k'/2m. We choose
as two independent solutions of Eq. (1) those de-

S(k, r) =~(k, r)hk/m.

J(k, r) represents the radial flux associated with
a nonlocal potential relative to the radial flux for
any real local potential. Deviations of &(k, r)
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from unity are a measure of the nonlocality of a
potential. Note that J(k, x) is unity in both of the
limits as r-0 and x-~.

According to our definition (4), the radial flux
is the flux associated with a source at the origin,
which looks like a point source in the limit as x

Then as this spherical wave' propagates
from the origin, S'(k, r) (0 corresponds to a lo-
cal loss of flux and S'(k, r) )0 corresponds to a
local gain of flux. By virtue of Eq. (8), these lo-
cal losses and gains must exactly compensate
each other in such a manner that there is no net
loss or gain of flux. The net area under an
S'(k, r) curve as a function of x must be zero. In
some cases, S'(k, r) may be very small over a
substantial distance that is within the range" of
a nonlocal potential, in which case the wave is
propagating almost like a wave for a local poten-
tial even though S(k, r) may be quite different
from hk/m. We illustrate these effects in Fig. 1

for the rate of change of the relative radial flux.
We will discuss this figure in more detail later. .

If the parameters of a local potential with ap-
proximately the same range as a nonlocal poten-
tial are adjusted so that both potentials yield the
same absolute phase shift over an energy inter-
val, then the two potentials are equivalent in the
energy interval insofar as measurements depend-
ing on the phase shifts are concerned. The wave
functions for the two potentials can be normal-
ized so that they are identical in the limit as r

0.4

0.3

0.2

-~, and the behavior of the wave functions for
distances within the ranges of the potentials can
be compared. This procedure was used by Pe-
rcy, ' and he observed that the wave function for
the nonlocal optical-model potential was system-
atically smaller than the wave function for a cor-
responding local optical-model potential inside
the nucleus. This damping of nonlocal wave func-
tions relative to local wave functions is called
the Percy effect, and it has been interpreted by
Austern" as a depletion of flux in the elastic
channel due to virtual excitations of the incident
nucleon to other channels.

The Percy effect can be treated more explicitly
by relating the wave functions obtained from Pe-
rcy's procedure' according to u„(k, x) =A(k, x)ui(k,
&). A(k, x) is called the damping function, and
the Percy effect corresponds to deviations of
A(k, r) from unity. In previous work, ' ' we im-
posed the requirement that A(k, r) be independent
of the boundary conditions used to normalize the
wave functions. For the solutions considered
here, this requirement takes the form

f~, (k, x) =A(k, r)fi, (k, r) (10)

Z(k, r) =A'(k, ~) =p„(k, r)/pi(k, ~),

An immediate consequence of this requirement is

S(k, x) =A'(k, x)hk/m,

since the radial flux for any real local potential
is a constant. Thus, we can equate the relative
radial flux Z(k, r) to the square of the damping
function; similarly, we can identify the relative
radial flux with the ratio of the nonlocal and lo-
cal radial probability densities:
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where p(k, x) =p(k, r, x) as defined in Eq. (6).
These relations and the requirement used to ob-
tain them are discussed in more detail in Refs.
6 and 7,

We will now use the preceding analysis to com-
pare the properties of the nonlocal equation (1)
with the potential used by Percy and Buck, '~
their local approximation to this equation, and the
the effective-mass equation with the parameters
proposed by Scherk. ' For s waves, the nonlocal
potential is

t' (F'
FIG. 1. Rate of change of the relative radial flux for

the nonlocal potential given in Eq. |,'18). The curve la-
beled 1 is for a diffuseness of 0.10 F; the curve la-
beled 2, for a diffuseness of 0.65 F; and the curve la-
beled 8, for a diffuseness of 1.20 F.

V(x, x') = V(2(r+r'))hz(r, r'),

where

V(r) = V, (1+exp[(r-R)/a]) ' (14)
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FIG. 2. Relative radial flux for the nonlocal potential
in Eq. (13) (solid line), the Percy-Buck local-potential
approximation given by Eq. (17} (dotted line}, and the
effective-mass equation given by Eq. (19) (dashed line).

and

FIG. 8. Rate of change of the relative radial Qux for
the nonlocal potential {solid lines), the Percy-Buck
local-potential approximation (dotted lines), and the
effective-mass equation (dashed line). The curve la-
beled 1 is for E=5 MeV, and the curve labeled 2 is for
E =45 MeV; the effective-mass equation curve is in-
dependent of energy.

&a/2 (15)

&p,(k, r) = [1-(mP'/2k')Vp, (k, r)] '. (17)

The approach we have followed for the radial
equation with a nonlocal potential can also be
used for the radial effective-mass equation. The
relative radial flux for the effective-mass equa-
tion is

J, (k, ~) =[1+c(E,)p(~)] '

in the notation of Ref. 1, and

J, (k, r)
= [1-(mP'/2h')Vps(ko, )0V(x) /V]o'

in the present notation. The energy Eo =k k,'/2m
is taken to be 25 MeV. Note that the relative ra-
dial flux for the effective-mass equation turns
out to be identical to the effective mass used in
Ref 1

4, Jp&, and J, are compared in Fig. 2 for F
=25 MeV. J is the solid curve, J p& is the dotted

The parameters used in this study are taken from
Percy and Buck' unless otherwise indicated. The
radius R =R,A'~' was taken to be 4.172 F and I'/
2m was taken to be 20.734 MeV F'. The local-po-
tential approximation to the nonlocal potential
Vps(k i ) 1s given by

Vps(k, ~) exp ((mP'/2k')[&-Vps(k, ~)]]= V(~), (16)

and the relative radial flux obtained from Percy's
empirical damping function' is

curve, and 4, is the dashed curve. Figure 3 of
Ref. 1 is a comparison of the quantities VpB(k t)/
VpB(k 0) and V(r)/V tOhat was used to point out de-
ficiencies in the Percy-Buck approximation. It
follows from Eqs. (17) and (19) that Fig. 2 of this
note represents a comparison of the same quanti-
ties. It is clear that 4p& is a much better approx-
imation to 4 than J, . Figure 3 of this note
shows a comparison of clps (dotted line) and Z'

(solid line) for 8 = 5 and 45 MeV. The dashed
line in Fig. 3 is t, which is independent of ener-
gy. Again, it is clear that 4p& is a better approx-
imation to 4 than J, . %e have made similar
comparisons of the Percy-Buck local-potential
approximation and the numerically exact results
for A =27-216 and E = 5-45 MeV. In no case are
the differences between the exact results and the
approximation any greater than is indicated in
Figs. 2 and 3. Fiedeldey' has shown that the Pe-
rcy-Buck approximation does not deteriorate for
higher angular momenta. %e conclude that the
Percy-Buck approximation adequately reflects
the energy dependence and surface properties of
the nonlocal potential, and that the effective-
mass equation with the parameters proposed by
Scherk' does not.

In this writer's opinion, Scherk' has underesti-
mated the effect of nonlocality on the surface
properties and energy dependence of the nonlocal
nuclear optical-model interaction. The effect of
the nonlocality on the surface properties can be
seen in Fig. 1 which shows J'(k, r) for the nonlo-
cal potential (13) with different values of the dif-
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fuseness. As the diffuseness is increased, the
maximum of J'(k, r) shifts to larger values of r.
Curves 1 and 2 of Fig. 3 show that the surface
properties are also dependent on the energy.
However, these differences between the effective-
mass equation and the nonlocal-potential equation
do not constitute a basis for rejecting an effec-
tive-mass equation as an optical model. The rel-
evance of an effective-mass equation as a nucle-
ar optical model can be based on analogies with
classical optics.

It is apparent from Figs. 2 and 3 that the prop-
erties of the two approximations differ from the
properties of the nonlocal equation for small r.
Since both approximations are thought to be ex-
act in the nuclear interior, "these differences
are of interest, and we conclude this note with a
few remarks about them.

The approximations are based on an extrapola-
tion of a model'a in which the radius R in Eq. (14)
is taken to be infinite (infinite nuclear matter).
In that model, translational invariance requires
J(k, r) to be independent of r, and flux is con-
served locally. However, flux is not conserved
locally if R is finite. For finite R, the differenc-
es between the exact and approximate results for
small r are due to the fact that the exact J(k, r)
satisfies a global radial-flux conservation re-
quirement (8) whereas the approximations to
J(k, r) do not. According to Eq. (8), the relative
radial flux must be 1 at the origin for any real,
symmetric nonlocal interaction with a finite
range. " We have shown previously" that Eq. (8)
must be satisfied in each partial wave of a par-
tial-wave expansion with a nonlocal interaction. "
The global conservation of radial flux is a gener-
al property of interactions (local or nonlocal)
which have spherical symmetry. Hence, the be-
havior of J'(k, r) near the origin and its correla-

tion with similar behavior near the surface (r R)
is a geometrical effect that is characteristic of
nonlocal interactions which have spherical sym-
metry.

The author wishes to acknowledge useful con-
versations with A. D. MacKellar, B. Mulligan,
and R. G. Seyler.
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