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NH," ions in the vicinity of X transition is 0.74
eu, which is substantially less than the R 1n2
=1.38 eu for NH,Cl. The result suggests that the
change from complete disorder to complete or-
der is spread out over a much wider temperature
range than for the chloride and is consistent with
the present low-frequency Raman data.

In conclusion, we point out that despite its
close association with the ) transition, the low-
frequency mode at 56 cm ™! is not, however, the
“soft mode” for the order-disorder transition in
its usual sense. While the peak frequency of this
mode is insensitive to temperature (see Fig. 1),
the spectral width is broadened considerably as
the temperature is lowered below 7T',, along with
the drastic decrease in scattering intensity. The
anomalous broadening and the quantitative cor-
relation of the temperature-weighted Raman in-
tensity with the specific-heat data suggests that
the mechanism of decaying short-range order
below T, is correct. This mechanism, which
has been shown to be responsible for both the
specific-heat anomaly and the Raman scattering
below T,, is likely also responsible for the cor-
related critical oscillations of NH,* ions recently
observed in the proton spin-lattice relaxation
near the X transition in NH,Br.'
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Born-Oppenheimer Principle in Reverse: Electrons, Photons, and
Plasmons in Solids—Singularities in Their Spectra*
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Rutgers, The State Univevsity, New Brunswick, New Jevsey 08903
(Received 15 March 1971)

A novel application of the Born-Oppenheimer approximation is made which predicts
the strength and nature of the singular threshold structure associated with plasmon sat-
ellites for a wide class of experiments involving the interactions of photons or fast elec-

trons with solids.

I consider here the theory of plasmon singular-
ities in a wide class of experiments in which a
core electron is excited up into the continuum of
unoccupied states. This excitation could be pro-
duced either by absorption of a photon or by a
collision with a fast electron. It is measured
either by detecting a change in the initial-state
particle as in soft-x-ray absorption or high-en-
ergy—electron energy loss, or by detecting a fi-
nal-state product as in x-ray photoemission,

soft-x-ray emission, or appearance-potential
spectroscopy.’ Typically the spectra from such
experiments have plasmon satellites and possi-
bly threshold singularities.?

In experiments such as x-ray emission and ab-
sorption, the plasmon satellites tend to be much
weaker than one might expect after estimating
the coupling constant. There is, however, a
strong cancelation® in second-order perturba-
tion theory. In general, though, one knows that
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second-order perturbation theory cannot be valid
because it predicts neither the large number of
weak satellites sometimes observed in insula-
tors? nor the correct power-law form for the
threshold singularities in metals,? which, as we
will see, occur on the satellites as well. In con-
trast, in other types of experiments such as ap-
pearance-potential spectroscopy,* the plasmon
singularities are large and dramatic,® and seem
to follow rather closely my exact solution® to the
core-hole model.

The point of view taken here is that the reason
one can experimentally observe plasmon satel-
lites at all on top of a structure broadened by the
other effects of the electron-electron interaction
is that at least for a limited region of phase
space they are reasonably sharp, well-defined
excitations. When the important interband tran-
sitions have much lower energies than the plas-
ma energy, then the situation is like an electron
gas and plasmons are long-lived at ¢ =0, but
their decay rate increases rapidly” with increas-
ing g. In general, the situation is more compli-
cated and each case must be treated separately.
It is clear, however, that the region of ¢ space
where a plasmon is well defined (if any) must be
such that energy and momentum cannot be con-
served in a first-order direct process in which
the plasmon decays into an electron-hole pair.
Said another way, the electronic recoil energy
must be smaller than the plasmon energy, and
in fact it must be much smaller, or else the sec-
ond-order matrix elements can be large. We as-
sume for the examples given here that the region
satisfying this criterion is centered at ¢=0 as in
the electron gas.

The first stage of the approximation is then to

treat the plasmon as a good excitation of the sys-
tem. Plasmons which have significant decay
rates will not be referred to as plasmons since
they cannot produce sharp singularities in the
spectrum. Therefore our Hamiltonian, and in-
deed much of our algebra,® will resemble that of
Bohm and Pines although our philosophy will be
quite different. Sharp plasmons cannot produce
a substantial electronic recoil as discussed
above but must be treated to all orders in per-
turbation theory.

The Born-Oppenheimer principle provides a
time-honored and very accurate way to handle a
similar problem in molecular spectra. Here the
boson-like oscillator coordinates of the vibra-
tional states are the “slow” variables because
their recoil kinetic energy when the electronic
state (“fast” variable) changes is negligible.

The principle says that, to a very good approxi-
mation, one can solve the problem by holding the
“slow” variables fixed, solving for the energy
eigenvalues of the “fast” variables, and then us-
ing these eigenvalues as effective Hamiltonians
for the “slow” variables—one for each state of
the “fast” variables.

Here we use the Born-Oppenheimer principle
in reverse. The boson-like oscillator coordi-
nates of the plasmons are the “fast” variables,
and the electrons are the “slow” variables. It is
a good approximation for threshold singularities,
because the electronic recoil must be a small
fraction of the plasma energy, or else the plas-
mon would not be sharp and would not contribute
to the singularity.

As an example let me consider a simple model
of x-ray absorption and take the Hamiltonian to
be

H=cc [eg=2 (412 /q®)p, -2 Vi@, +a - N+ Dw a a, + 2 (k2/2m¥) e, e,

+ 20V aP g +a. ") + 3 (21e? /g0 T, (1)

The operator c creates a deep core hole of energy €,, ¢ kT creates a conduction electron of energy k2/
2m*, and aqT creates a plasmon of energy w,; qu is the density fluctuation operator for the conduc-
tion electrons: qu =2 1Che chk. Note that we have assumed a unit form factor for the deep state so
that its interaction V, with the plasmons is the same as that of the conduction electrons. For simplici-
ty we assume a simple dielectric function €(g, w) =1-w,?/(w?*~A2) for small ¢q. This corresponds to a
plasmon energy given by w.?=w,2+A2, and V,=4me’w,’/2w,q®. For an insulator, A is of the order of

q

a typical interband transition and goes to a constant as ¢ - 0, while for a simple free-electron metal,
A,~sq as ¢~ 0. The case of a metal is slightly more complicated because the plasmons themselves
are composed at least partially of conduction-band particle-hole excitations; and if the Hamiltonian
(1) were taken literally, we would be double counting. Thus one must be careful not to count the terms
which renormalize the plasmon through its interaction with the Fermi sea, because we take the plas-
mon to be given a priori; alternatively one could use the Bohm-Pines® procedure.

1230



VOLUME 26, NUMBER 20

PHYSICAL REVIEW LETTERS

17 May 1971

The absorption coefficient for x rays of frequency v is proportional to

WolT8(w=H+E)T o) =23 1WA T Tlyo) P6(v=E; +Ey),

()

where 1y,) and E, are the ground-state wave function and energy of the system containing no deep
holes, no real plasmons, and the conduction electrons in their ground state (or no conduction elec-
trons in the insulator case). The operator T is the transition operator given by T'= (25, fkckT)c,
where f, is the oscillator strength for the transition. What we do is to use the Born-Oppenheimer
principle to calculate |y,) and E;,, However, if the electron operators are held fixed, then (1) is easily
diagonalized in the plasmon coordinates by the unitary transformation

U:exp[z;q(_vq/wq)(pq"cc.r)(a-q—aqT)]' (3)
The transformed Hamiltonian H, is
By=23,0k2/2m¥c, e+ D [2me?/q2e(q, 0)]p, o + 20, wea o +a, +{E~ 2 [4me? /g2 (g, 0) ] p, T} cc T, (4)

where we have noted that V 2/w,=[1-1/€(g, 0)] 2me2/q?.

‘Thus the Born-Oppenheimer Hamiltonian for the electronic states involves a screened Coulomb po-
tential 7 [47e2/q%(q, 0)]e*"T which is turned on at the time the x ray is absorbed and off again when
it is re-emitted. For an insulator, the suddenness of the switching is irrelevant, and one has the or-
dinary excitonic solution. For a metal the solution is also known,? and we merely incorporate the re-
sults here; we assume that the second term in (4) can be neglected. One may also calculate the dif-
ference between (4) and the exact transformed Hamiltonian UAU ", which is

ﬁl =E(V¢ /wa)ck + aTck(a' E/Wl*)(aq _a'qT)
qk

+ 23 (Vo /w)(Ver /@) Ch s g vqr i@ T/ 2m¥)(ag—a o Nag=a.,").  (5)

kaq”

In a metal one must be very careful not to count terms in (5) that renormalize the plasmon. Since
E(Vq /wg)? is the coupling constant for the problem, which is typically of the order of unity or less,
and since the energy denominators in a perturbation expansion in powers of &, are of the order of We,
the deviations from (4) are clearly of the order of the electronic recoil energy divided by the plasma

energy —a small quantity because g, ,, is small.

One must also calculate the transformed transition operator

T1=33, Ja¥r i) expl TV, /0 ) T T=1)(a, —a_ ) ]e'F"Te, e, 6)

where f(r) is the Fourier transform of the oscil-
lator strength f,. We note that f(r) nearly van-
ishes unless 7 is less than the radius of the in-
ner core state, so that .4 Tmax<<1, and so to
an extremely good approximation 7T=7T7 and is
independent of the plasmon coordinates. Thus in
the Born-Oppenheimer approximation there are
no satellites at all® in x-ray absorption (or emis-
sion). These are produced by treating (5) as a
perturbation. For insulators one notes that un-
less the coupling constant is small, the two-
plasmon term is just as important (that is, the
same order in the electronic recoil divided by
the plasma energy) as the one-plasmon term.
Furthermore, the number of terms increases
rapidly with the order of the perturbation theory
because of the many different combinations pro-
duced by the two terms, so that the “conver-
gence” is probably rather slow. This may ex-
plain why Brown’s group® sees a long series of
weak plasmon satellites. In a metal, however,

the Fermi surface keeps the value of k2 large, so
that unless the coupling constant is very large,
the first term (one-plasmon term) of (5) will be
much more important than the two-plasmon
term. Thus the first plasmon satellite, although
small itself, will be much larger than the sec-
ond plasmon satellite. The calculation of the
strength of, say, the first satellite in a metal is
a straightforward application of perturbation the-
ory in the first terms of A, of the same form en-
countered in the electron-phonon interaction, ex-
cept that now the “bare” conduction Green’s func-
tion is to be calculated in the presence of the
transient shielded potential as in Ref. 2, and the
final result is to be convoluted with the modified
deep-hole Green’s function again as in Ref. 2.
Thus the Anderson orthogonality block affects all
satellites equally. The divergence due to the
transient electron-hole coupling? also occurs in
the satellites, but the angular factors in , cause
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the exponents from a different combination of
partial waves to survive. Detailed calculations
like those of Ausman and Glick® will be neces-
sary for each case. It would be quite possible,
however, for the satellite to have a net positive
exponent (divergence) while the main threshold
does not. The place to look for this would prob-
ably be in emission spectra.

Let me now discuss an experiment in which the
plasmon satellites are strong. Appearance-po-
tential spectroscopy’ provides such an example.
Here one bombards the solid with electrons and
plots the total soft-x-ray yield against the ener-
gy of these electrons. One in effect is measuring
then the probability that one of these electrons
excites a core hole and another conduction elec-
tron. This probability is proportional to an ex-
pression of the form (2), except now the transi-
tion operator T is

T"=2M, (K)c,c, Tc, (7

Rk

where M, ,+(K) is the matrix element for an ini-

tial election of momentum K to scatter off the
deep state into momentum state k& while in the
process producing another conduction electron of
momentum k2’ and a deep hole. The point to note
is that the initial fast electron interacts only
weakly with plasmons, so that vertex correc-
tions involving this electron can be neglected.
However, the interaction is repeated, so that
one does have to convolute the results (2) and

(7) with the admittance function for the fast elec-
tron, which near plasmon thresholds can be
shown to be of the form

Jatet“t(1—qe -iwpt) 1, (8)

where a is the probability that in a collision the
fast electron emits a sharp plasmon (as opposed
to a broadened plasmon or an electron-hole pair).
This is an annoyance, because (8) also produces
plasmon satellites. Possibly the anisotropy of
the plasmon coupling and propagation in graphite'®
can be used to separate these effects in a Hous-
ton and Park® type of experiment.

To evaluate (2), we need the transformed tran-
sition operator (7):

T1=3 [facvasr mer, v)expr (V, /o e T T+e' T T =1la, ~a. ) expli(k: T + k- 7] cylep e
kR’ q

= [exp) (V, /w)(a~a- "]TT.

The last equality follows because » ~k ' <q™?
and 7' ~7%.ore <¢!, so that one may, to a very
good approximation, replace the curly brackets
in the exponent of (9) by unity. Thus there are
strong plasmon satellites without going to devia-
tions from the Born-Oppenheimer approximation,
and one can neglect #,. Using (4) and (9) in (2),
we see that the plasmon and electronic parts of
the problem are separable. In a metal this
means that each plasmon satellite has the same
power-law singularity as the main threshold.
The nature of this singularity is rather interest-
ing, and different from Ref. 2 in that now one
has two electrons in the transient potential, so
there is greater likelihood of a positive exponent
(divergence). The plasmon part of the problem
is the same as the model core-hole problem I
solved exactly earlier.® Therefore the strengths
of the plasmon satellite edges follow a Poisson
distribution, with the nth satellite proportional
to e %" /nl, with a=2 ,(V,/w,).

After inspecting (6) and (9) it is clear how
these results can be generalized to other types
of experiment; if the number of “slow” electrons
is conserved in the transition, then the plasmon

1232

9)

singularities in the spectrum will be very weak,
and for metals, the exponent of each satellite
will be different from that of the main threshold;
if the number of “slow” electrons is not con~
served, then the satellite singularities will be
strong, will follow a Poisson distribution, and
for a metal will all have the same exponent as
the main threshold. For the purposes of the
above, a core electron, as well as conduction
electrons with energies near threshold, is to be
regarded as “slow.”

A more complete experimental verification of
these ideas would involve doing appearance-poten-
tial spectroscopy on one of the several materials
for which x-ray absorption data is available and
vice versa. X-ray photoemission (a strong satel-
lite experiment) should be done on simple materi-
als. )

I am grateful to J. E. Houston for sending his
data prior to publication and for discussions of
the experimental aspects of the problem, and to
J. J. Chang for discussions of the theory.
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Experimental data on the nonlinear excess conductivity of Al films due to the fluctua-
tion of the order parameter have been analyzed by taking account of the Aslamazov-Lar-
kin term and the anomalous term proposed by Maki and Thompson. The analysis shows
clearly the existence of a large contribution from the Maki-Thompson term to the non-
linear excess conductivity.

The anomalous term arising from the renormalization of the current vertex due to the fluctuation of
the order parameter, which was proposed by Maki' and Thompson? (MT) and first observed by Crow
et al.® is regarded to be of major importance in the study of linear and nonlinear excess conductivity
in superconducting systems.? In particular, quantitative analysis is required at present for the con-
tribution of the MT term to the nonlinear excess conductivity.

Since Smith, Serin, and Abrahams® found a nonlinear excess current in Pb films above T,, the non-
linearity has been studied theoretically®® and experimentally.’®!®* Schmid’ has given the expression
of the nonlinear field dependence of the Aslamazov and Larkin (AL)* term for a thin film of thickness
d based on the time-dependent Ginzburg-Landau (GL) equation with random force:

o a/(T, E) =0 4, (T, 0) [, dx exp{-x-[E/E (1]}, (1)
where

0 aL'(T,0) =e2/16%de, (2)

E(T)=[16V3k;T, /1e £(0))€*/2 = E €2, (3)

£(0) is the GL coherence length at 0 K and €=(T=T,)/T,. AtE>E,(T), Eq. (1) becomes
O’AL’(T,E) =(e2/16ﬁd)l"(-§)(Eco/E)2/a "

which is independent of temperature. Tsuzuki® later confirmed this result by a microscopic calcula-
tion using the temperature Green’s function method. Experiments'®!? on the nonlinear field depen-
dence of the excess conductivity have been reported but the nonlinearity of the MT term has not been
clarified in spite of its importance. Recently Maki'® proposed that the electric field response of the
MT term is given by

ot (T, E) =[0(T, 0)/1n(¢/8)) Jo (dx/x)[exp(~bx/€)—exp(~x)lexp{-[E/E (T)]?x3), (5)
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