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through the plasma resonance.
Jesuits. —The results obtained are shown in

Fig. 3, where we have plotted the increase in the
satellite intensity as a function of the wave-num-
ber separation between the two dye beams. The
error bars represent the standard deviation of
the mean of at least 10 shots at each point (ex-
cept for the 62-cm ' shift where 5 shots were
taken). It can easily be seen that there is a.n in-
crease in the satellite intensity when the dye
lasers are tuned to the resonance of the plasma.
The slight increase on the low-frequency side
may prove to be significant.

We wish to acknowledge useful discussions
with Dr. T. S. Brown. This work was supported
by a research grant from the Atomic Energy Con-
trol Board of Canada.

FIG. B. The fractional increase of the satellite inten-
sity as a function of the frequency difference between
the dye lasers. The shift indicated by the arrow is that
of the normally observed satellite.

lite, and the intensity of the satellite was mea-
sured with and without the dye-laser beams. By
varying the wavelength of one of the dye lasers
we were able to tune the frequency difference
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A theory is presented for the nonlinear evolution of the beam-cyclotron instability, to-
gether with the results of a series of computer experiments confirming the main points
of the theory. We conclude that at a turbulent level which is proportional to (Q„l~&,)',
a transition is made to the nonmagnetic ion acoustic instability. For small T;/T, , the
system then evolves until the fluctuating fields become strong enough to stabilize by ion
trapping.

In this Letter we report on the nonlinear theory and on numerical simulations of the beam-cyclotron
instability. ' ' The instability passes through three distinct phases of evolution. At first, the beam-
cyclotron instability develops quasilinearly. When the turbulence reaches a prescribed (relatively
low) level, anomalous wave-particle interactions smear out the individual cyclotron resonances, and
the instability becomes a nonmagnetic ion acoustic instability. This ion acoustic instability then evolves
quasilinearly, if T; «T, , until the fluctuating electric fields become large enough to trap ions, stabi-
lizing the system. The fields are then maintained at a nearly steady level and the plasma heating rate
is very much reduced.

The beam-cyclotron instability arises in plasmas when ions drift with speed v„relative to electrons,
across a magnetic field. For v, '&c, '=T, /I, ion modes can couple to electron Bernstein modes to
drive an instability. ' ' lf an electron's cross-field diffusion is included in its unperturbed orbit, the
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dispersion relation in the electron frame, for times short compared to 0„. , is given by

where h. , (v) is k D, D being the cross-field electron diffusion coefficient. In (1), Z is the derivative
of the well-known plasma dispersion function, the J„are Bessel functions, v,. =(T, /M). ' ' is the ion
thermal speed, A. D is the electron Debye length, and ~~„Q„, and Q„. are the electron plasma, elec-
tron cyclotron, and ion cyclotron frequencies, respectively. In a collisionless plasma, where cross-
field diffusion is caused by turbulent fields, an equation for b~»(v) has been given by Dum and Du-
pree':

(2)

The quantity F„ is I „=—,
' [8'„,'(k'v~/Q„) + J„+,'(k'v~/Q„) ] which differs slightly from the result of Ref.

5 since our wave spectrum is not isotropic, but rather is one-dimensional. Assuming that f, (v~) is
Maxwellian with temperature T, and that (for simplicity) T, /m —= v, '& v„', then the integral and summa-
tion in (1) can be performed to give

1- »
' Z' ' -1- — cot r "- =O.

t»v„/v, = T, (t)/Mv, ', -
dI y, II'/dt =2y

I y, I'.
(7)

(8)

Since the growth rates for modes with kA. D &1 are
essentially independent of temperature, it is
clear that T„T;, and the square of the fluctuat-
ing potential, Q» I q „ I

', all grow exponentially
with growth rates in the ratio 2:3:5.

If, on the other hand, all modes have kA. D&1,

Notice that in Eq. (3), the magnetic field appears
only in the argument of the cotangent.

Clearly, there are two regimes, 4&v» «Q„/&
and &e» &Q„/v. We consider first the former
case, where the dispersion relation reduces to
that considered in Refs. 1-4. If T; «T„ the un-
stable modes cluster in narrow bands about the
cyclotron harmonics, with growth rates given by'

»
2 nQ„

y, =, (.. .), , -(,— Q.,), (4)

for y» &kc, . In Eq. (4), 2&v» nQ„-= k[ v~-c, (1
+k'x, ') "'].

In order to find the effect of these unstable
waves on the electron and ion temperatures' and
on the drift velocity, we use the quasilinear equa-
tions to evaluate the appropriate moments of
Bf, /&t. To facilitate this calculation we assume
that the ions are initially cold and that the elec-
trons are Me.xwellian. If most of the wave energy
lies in modes with kA. D&1, the results in the as-
ymptotic time limit are

T (t) =(5e M~& v g„~ y„~ 2)~&5

T (t)-'T "'/'M'~'v

then y, - T, "' and we find that IE» I', T„and
T, are all proportional to t"' in the long-time
limit. Thus, the heating rate is drastically re-
duced from the exponential heating rate for kA, D

& 1. The neglect of all other nonlinear effects
would therefore lead to the conclusion that the
electrons heat rapidly to a temperature such that
k~&„A&=(Q„/v. », )v, /v„= 1. However, as we shall
see below, other nonlinear effects do significant-
ly influence the plasma heating.

As the electric fields grow, the turbulent col-
lision frequency 4~~ cannot be neglected in Eq.
(2). To find an approximate expression for b.&u»,

we average Eq. (2) over electron velocities, ne-
glecting the explicit velocity dependence of b,&u»

on the right-hand side. Assuming that f, is Max-
wellian, the integration and summation can be
performed as in the evaluation of the dispersion
relation. The result is

(u„.-i((a(u )+y )
'

XImcot ~
ce0 (9)

where n, is the electron density.
%hen the electric fields reach such an ampli-

tude' that (b~) & Q„/& [the second regime of
Eq. (3)], the cotangents in Eqs. (3) and (9) be-
come -i and i, respectively. Thus the dispersion
relation reduces to that in the absence of a mag-
netic field, and the instability goes over into an
ion acoustic instability. This occurs at a level
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of turbulence such that

The band structure of y~, which characterized
the beam- cyclotron lnstablltlyq vanishes

q
and

the waves grow at the slower acoustic growth
rate

m yn
"' kV~

Yk 8 M (1 +yz) 2)3/2 t

for vL)&&c~.
To study the subsequent evolution of the elec-

tron and ion temperatures, we have taken ap-

propriate moments of the quasilinear diffusion
equation for an unmagnetized plasma. For kXD
&1, the results are identical to Eqs. (5)-(8), ex-
cept that the growth rate is given by Eq. (11)
rather than by Eq. (4).

After a period of sustained growth at this slow-
er rate, the plasma is expected to stabilize when
the ions become trapped, ' i.e. , when

where k„ is the wave number of the mode which
is responsible for the trapping. Using the linear
dispersion relation &u~-tv~ = -)zc, (1+&'Xn')
and using Eq. (5) to relate y~, (f) to T, (t), we

Table I. Each of the seven columns refers to a different numerical experiment. Bows 1-4 give
basic parameters of the numerical experiments: mass ratio, electron-cyclotron to plasma frequen-
cy ratio, system length in cells, and number of particles. Bows 5-7 refer to the beam-cyclotron
phase: harmonic number of the largest-amplitude mode, measured growth rate, and maximum
theoretical beam cyclotron growth rate. Note that there was no observable beam-cyclotron phase
in Bun l. Bows 8 and 9 give the measured level of turbulence Z lZ„l /4snoT, (0) at the "knee," and
the value predicted by Eq. (10). Bows 10 and 11 give the measured growth rate in the acoustic phase
and the maximum theoretical ion-acoustic growth rate. Bows 12-14 refer to ion trapping:
the measured value of T, /Mv& at the onset of trapping, and the value predicted by Eq. {18)for the
observed k, A;D.
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find that ion trapping occurs when the electron
temperature is given by the equation

IO ~ ~ ~ ~
~ ~

2 1
tl' e (13)

~ J J 4
4

k

To summarize, we have shown that the beam-
cyclotron instability goes over to an ordinary
ion acoustic instability at a level of turbulence
given by Eq. (10). Stabilization will be due to the
linear saturation mechanism k;„~D-—1 only if
(1) this occurs at a lower electron temperature
than does trapping, Eq. (13), and (2) it occurs be-
fore the fields reach the level of Eq. (10) (since
there is no smallest unstable k for the acoustic
instability). Otherwise, if T, «T, , the electron
temperature at saturation is determined by ion
trapping, Eq. (13). Typically, k„A.D(t) 2 2 '~'

(waves with smaller k are less unstable); thus
the fraction of ion streaming energy that goes in-
to electron heating is T, /Mv~' ~ 0.02. Finally,
for the case of warm ions-T, /T, & v„/v„v,
& v„—ion acoustic waves are stabilized by ion
Landau damping. " In this case, Eq. (10) be-
comes a condition for nonlinear saturation. This
conclusion is consistent with computer experi-
ments reported in Ref. 2.

In most cross-field collisionless shock experi-
ments, "0„/&u~, is quite small, typically about
7'0. Thus, from Eq. (10), a cross-field stream-
ing instability in the shock front is expected to
become an ion acoustic instability above a very
low level of turbulence (or to be stabilized at
this level if T; is too large for the acoustic in-
stability to go).

We now report on the results of computer ex-
periments which confirm the main points of the
theory. The electrostatic code used is the same
as that used by Papadopoulos et al. ,

"and is de-
scribed by Dawson, Hsi, and Shanny" for the
case of no magnetic field. We summarize here
the results of seven experiments. Mass ratios
400 and 1836 were used; in all cases except one'

v, =v, (0), XD(0) =4 cells, and T, (0) =100T, (0).
Experimental parameters are summarized in
Table I. Parameters were chosen to insure that
a number of unstable modes with kA D(0) & 1 exist.

A typical graph (Run 3) of field energy, elec-
tron and ion temperature versus time is shown

in Fig. 1. Initially, the field energy and ion and
electron temperatures all grow exponentially
with growth rates in the ratio 5.5:3:1.7. This is
in good agreement with the quasilinear predic-
tion. Notice the drastic slowing down of the in-
stability occuring at about ~~, t = 800. This "knee"
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FIG. 1. Plots of electrostatic (ZE4 /4'), electron
thermal Q&T, ), and ion thermal (noT;) energy densities,
for Bun B. Energy units are arbitrary. The solid lines
are drawn in to emphasize the exponential behavior
during the quasilinear stages.

is a persistent feature of all runs and marks the
transition from beam cyclotron to ion acoustic
instability. After the "knee, " the field energy
and ion and electron temperatures still grow ex-
ponentially with growth rates in the ratio 3.6:3
:2.1, which is in fair agreement with the quasi-
linear theory. At ~~, t =2200, the instability sat-
urates. That this saturation occurs at the onset
of significant ion trapping is clearly indicated in
computer print-outs of phase space.

To further demonstrate that the instability goes
over to an ion acoustic instability after the
"knee, "we have plotted in Fig. 2 mode ampli-
tudes at two different times, ~~, t = 800 and 2000.
At ~~, t = 800, a band structure has clearly grown
out of the thermal noise. However between ~~, t
=800 and 2000, all mode energies have increased
by roughly the same factor. Thus the band struc-
ture of y„ is smeared out for w~, t~ 800.

For a time of 1600 ~~, ' after saturation, the
total field energy remains remarkably constant. "
During this time, the electron temperature in-
creases very slowly; however the heating rate
appears to be several times that expected from
classical collisions. The rate is so slow and the
time period so long that it is difficult to eliminate
numerical effects as the source of this heating.

Finally, we present in Table I summaries of
results of seven different experiments. The the-
oretically predicted maximum growth rate for
the beam-cyclotron phase (Row 7) is in all cases
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bility and the non linear saturation by ion trap-
ping.
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FIG. 2. Electrostatic wave energy l&~ I /4~ as a
function of mode number, for Run 2, at times ~&, t
= 800 (solid line) and cu&~t =2000 (dashed line).

larger than the observed growth rate (Row 6) by
a factor of about I to 2. This is to be expected
since (1) it is difficult to hit exactly the fastest-
growing mode, (2) other modes in the system
grow at slower rates, and (3) numerical colli-
sions are not completely negligible. There is
very good agreement between experimental and
theoretical values of the turbulence level at the
"knee" (Rows 8 and 9), growth rate in the acous-
tic phase (Rows 10 and 11), and electron temper-
ature at saturation (Rows 13 and 14). The agree-
ment is not as good for the strong magnetic field
runs. ) To summarize, the results of these nu-
merical experiments support the theoretical pre-
diction of the transition to an ion acoustic insta-
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