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We shovi? that if a Hamlltonian syl11D16try ls realized by Goldstone bosons then, ln
general, one does not expect the S-matrix and matrix elements of currents to be ana-
lytic functions of the symmetry-breaking parameters. This modifies the nonrenormali-
zation theorems for vector form factors and some theorems of Dashen and &einstein.

In order to extract the content of approximate
symmetries of the hadron interactions it is usual
to specify the total Hamiltonian according to

II = Ho +A.II'.

Here H, is the symmetric Hamiltonian, which
for definiteness we will consider to be SU(2)

SU(2) symmetric. H' breaks the Hamiltonian
symmetry down to SU(2) with strength character-
ized by the parameter A. . Then if S a{X) is an S-
matrix element, one implements perturbation
theory by a power series in A.:

S B(g) =S B(0)+S a'(0)A, +-'S„B"(0)& + ~ ~ ~ (2)

with S a(0) the matrix element in the absence of
symmetry breaking. The necessary assumption
implicit in developing this power aeries is that
S~B(X) is analytic in A. near A. =O. What we show
here is that if the symmetry of E/0 is realized by
massless Goldstone bosons, then this assumption
of analyticity in X is probably false. We find that
S B{A.) contains terms like A. IM. Such Ink terms
can quantitatively change calculations.

To see why this is so, first consider the Hamil-
tonian {I)with 1=0 so that H =H, is SU(2) SU(2)
symmetric. If the vacuum is just SU(2) symme-
tric, then the Goldstone theorem' requires that
we have massless pseudoscalar mesons, the
pion triplet. Now turn on the symmetry-breaking
force with O' SU(2) invariant. From this explicit
symmetry breaking the pions acquire a common
finite mass p. '-A. . Let us consider S„a(p, '), the
transition matrix element for P - n, as a sum on
all Feynman diagrams, ' and examine this as a
function of p, '. In the sum of all such diagrams
there will in general be a loop with a pion. We
can extract this pion and make explicit the loop
integration displaying the pion propagator,

S a(u') = . .
)
~"T.a"(q).

J (q

Here T B"{q)depends on q', other invariants,
and characterizes the off-shell process m'(q) +P
-m'(q)+n To lowest. order in the pion process

T „B' (q) contains no additional pions so that in
this approximation lt 18 independent of p, . To
this approximation we have, assuming uniformity
of the integral in p, ',

Since in general T „B' (0) IO, we conclude that in
the chiral limit A, -O, p, '-0,

li111 2
= 11111 2 2 2 T ~a (q) ln+

BS a(~')
p o (q p'

because the integral diverges like fd'q/q' Sinc. e
the pion mass p,

' is proportional to X we have
lim„,BS„B{k)/Bi.- IM so that S B(x) is not analy-
tic in X near A, =O. Higher orders in the pion in-
teractions can be expected to change the details
of this result by terms like (lnh)' and even per-
haps sum up. But we do not expect the feature of
nonanalyticity at A. =0 to be changed,

As an explicit example consider the electromag-
netic-charge form factor of the proton E,(q').
Fr om a once-subtracted dispersion relation one
obtains for the mean charge radius

In the approximation of retaining just the two-
pion intermediate state one finds

1~,(q') = Hq'-4~')/q'I '"(q'-4u ')

xE, *(q')A(q') 8(q'-4p').

Here the first and second factors are two-body
phase space and a P-wave factor, respectively.
E,(q') is the pion form factor, and A(q') is a 4=1
projection of the process m+m -N+N which is
nonvanishing at q'=0 and at the chiral limit, as
can be seen in Born approximation in the 0 model.
From (4) and (5) we find that as p, '-0, E, '(0)
—ln(y, '/m'), reflecting the fact that the charge
distribution is infinite in the chiral limit.
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In the light of these observations we will re-
examine some theorems which have assumed the
validity of perturbation theory in symmetry
breaking. We will assume that H, is SU(3) SU(3)
invariant and that this symmetry is realized by
SU(3) multiplets and an octet of pseudoscalar
Goldstone bosons.

Qur remarks apply only to perturbation theory
about the SU(3) SU(3)-symmetric Hamiltonian
and not to perturbations about the SU(3) symme-
try of the Hamiltonian. To distinguish these pos-
sibilities we split up the SU(3) SU(3)-breaking
Hamiltonian:

AH'=pH, +yH2

with H, SU(3) invariant but not SU(3) SU(3) in-
variant and H, violating SU(3) symmetry. If y
=0, then H is SU(3) invariant and the pseudosca-
lar octet is degenerate but not necessarily mass-
less. To lowest order in the symmetry breaking
their common mass p' is proportional to P.
Since the mesons are not massless if y=0, one
can probably do power-series expansions in y
but not in A, . Perturbative theorems about SU(3)
breaking, like the Behrends-Sirlin-Ademollo-

Gatto' theorem, are perfectly valid (provided
the dynamics of H' does not require a=0 if y =0).
Nonetheless it is of interest to examine these
theorems if one does perturbation theory in a
since the matrix elements of pH, and yH, could
be comparable. Perturbative theorems like
those of Dashen and Weinstein, "since they as-
sume perturbation theory in X, are necessarily
altered.

To examine the modification of the nonrenor-
malization theorem' and the correction to Gell-
Mann-Okubo mass formulas, we will use the
method of Furlan, Lannoy, Rossetti, and Segre. '
They have shown that the renormalization cor-
rection to the vector charge form factors at zero
momentum transfer between states la) and la')
is given by C =+ „'(C„'-C ")5(p,-p. .), where the
sum excludes the single-particle state. After ex-
plicitly extracting the factor y', we will consider
what remains in the chiral limit A. - 0, understood
as y -0 then P -0.

If the external states (a I and la') are baryon
states and the intermediate state a is the one-
baryon, one-meson state, then the correction
factor in the Ipl- ~ frame is'

y 7f I' dS
lim C„2( )3 ( 2)3J~ dnc' (&, n),

)p~~~ 277 ~( + )2 8 m

where nz is the baryon mass, p, the meson mass,
and C (s, g) an invariant amplitude which in non-
vanishing at the threshold s = (m + p, )' and the
chiral limit. In writing (7) we have explicitly ex-
tracted a factor y' and evaluated the remainder
in the SU(3) limit. As p'-0, the integral (7) di-
verges like in(p'/m'), and we conclude that such
states contribute renormalization effects of
O(y'lM), i.e., E, (0) =I+0(y'ink. ).

If the external states (a I and la') are pseudo-
scalar-meson states the procedure is similar.
In the I pl- ~ frame the first such state allowed
by parity is the three-pseudoscalar-meson state.
For example, for the f, (t) form factor in K» de-
cay one concludes that f+(0) =1+0(y'ln))).

In the I pl- ~ frame one gets the correction to
the quadratic mass formulas" 63P =2M„'+2M '
-3MA'-Mz hp. =4p, x'-3p '-p, ~' in terms of
just class-I states. Proceeding as before one
gets for the corrections ~' = O(y'), b, p' = O(y')
which are the usual results. From these we see
that the linear mass formula for the mesons is
2p&p =O(y') or b, p-O(y'/p, )-O(y'/v X) which can

D(0) =(&»'-&, ')+O(X'),

D'(o) = klf»lf, -f, lf»)+ o(&'),

(8)

(9)

where D(t) =(m'()I)') (s&p„» (0) [If'(t))), t =(p p~)'
with V p

E' the str~yeness-chandi& vector cur-
rent. Equation (8) follows from the nonrenormal-
ization theorem for f+(0) related to the diver-
gence by D(0) = (y.»'-p, ')f, (0). Since g»'-g, '
—O(y), using the result on f+(0) we conclude that
(8) should be replaced by

D(0) = (p»'- p, ,') +O(y'ln)(. ), (10)

For D'(0) we find no conclusion like (9) can be

also be gotten in the I pl =0 frame. From the
point of view of chiral perturbation theory the
quadratic formula for the mesons is of lower or-
der and hence should be better. This is valid ex-
perimentally.

Next we examine the theorem of Dashen and
Vfeinstein for K„decay. ' They conclude from
chiral SU(3) SU(3) perturbation theory that
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and similarly for A and Z decay

&»« = (MA+M»)gz g»Af»-(A)

=-}»'f»K»A'(o»

~»z=(Mz+M»)g~ -~&a»zf»(~)

«'f„K» z'(0). (12)

Since the explicit factor of the meson mass ap-
pearing on the right is of 0(«.), Dashen and Wein-
stein' evaluate K'(0) in the chiral limit. Howev-
er K'(0) diverges like In@,' in this limit. This
follows from (11) as p'-0 if one retains just the
3» state for which ImK, »(t) =p, (t, p, )R(t, p') with

p, the three-body equal-mass phase space and

R(t, p, ') nonvanishing at threshold and the chiral
limit. ' After extracting this logarithmic factor
the remainder is finite in the chiral limit. By

made. ' If one retains just the 7|K intermediate
state, the resulting Omnes equation for D(t) can
be solved exactly and implies that

D'(0) = [D(0)/'»l J(„„)dt 5„(t)/t'.

5,(t) is the S-wave»-K scattering phase shift. In
the SU(3) limit p, ,= p, »= p, , 5o(t) =(t-4p'/t)'"A, (t).
In the chiral limit the 8-wave meson-meson scat-
tering length vanishes, and we find A, (t) -t/f '
near threshold. The integral diverges like lnp. '
as p'-0. Hence D'(0)-O(y ink. ) which is incom-
patible with (9) if the first term is O(y). Be-
sides the first term of (9), one finds that there
are additional terms O(y). '

Finally we examine the hadronic corrections
to the Goldberger- Treiman relations. The ma-
trix element of the divergence of the axial cur-
rent between nucleon states can define the off-
shel17(N vertex K, „(t) by D„(t)=~2p, ,'f„K,„(t)/
)),,'-t, K,„(p,,') =g,». The correction to the
Goldberger- Treiman relation is then

5, = 2M„g„W2g,--f, = -~2p, 'f„K, '(.0),

1 dt ImK, „(t)
» (3u)' t(t-v & )

parametrizing this piece in terms of E and D,
the new sum rule is gotten by eliminating E and
D from

5,» = p, 'f, 1n(3 p. , /M)v 2(E+D),

0»« = p. »'f» In(p. »+ 2 p, ,/M)( —v 2/3)(3E+D),

0»z= p, »'f» In(p»+ 2}J.,/M)&2(D E).-(13)
If one assumes that the E/D ratio in (13) is

equal to the same ratio for the meson-baryon
couplings one has

»j&»«=(P /4» ) In(3P /M)/

In(p, »+ 2p, ,/M) (14)

~~» = 5w»/~&Z1r»f5=0 08 +0 02 &»A =-&»«j
g»Af»=0. 32+0.10. The left side is =0.25 and the
right side is =0.24 with M =M„; the ratio of the
logarithms give a factor of 4.
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