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(lns) ' relative to the leading M= 0 cut contribution for
two particles of spin & 2.

This test is reminiscent (although different from)
that proposed for factorization by H. D. I. Abarbanel

and D. Gross (to be published), to wit, the spin inde-
pendence of single-particle inclusive distributions.

aC. DeTar et al ., Phys. Rev. Lett. 26, 675 (1971).
OM. N. Misheloff, Phys. Rev. 184, 1782 (1969).
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Motivated by scaling considerations we formulate a theory of Z&& decay based on the
Kemmer equation. We find that our theory {1)has a symmetry-breaking parameter of
order 10-80'%%uo which agrees with experiment, {2}makes a definite testable prediction
of a kinematic zero at t = (ms+m„) in the "effective" scalar form factor, and (8) yields
a modified Callan-Treiman relation which improves agreement with experiment.

It is we". known that pseudoscalar particles
can be described by at least two different co-
variant field equations, namely, the Klein-Gor-
don (K-G) and Kemmer equahons. ' For many
classes of processes (such as the quantum elec-
trodynamics of spin-0 mesons) calculations
based on either equation yield identical results. '
Therefore, it has often been tacitly assumed
that the two equations will yield identical results
in all cases.

We note, however, that the K-6 and Kemmer
fields behave differently under scale transforma-
tions [see Eqs. (2) and (3) below]. Since sym-
metry-breaking effects are sensitive to the scale
dimensionalities of the respective fields, ' it fol-
lows that in principle the corresponding field
theories could lead to qualitatively different re-
sults in processes, such as K„decays, involv-

ing two or more pseudoscalar mesons of differ-
ent mass.

To date this possibility has not been studied in
a formal field theory owing to the difficulties in-
volved in treating the strong interactions. None-
theless, the scaling argument suggests that even
in a phenomenologi cal treatment of such a pro-
cess, the same assumptions could yield qualita-
tively different results from analyses based on
the K-0 and Kemmer equations, respectively.
If different results were obtained, we could then
ascertain which equation gives the better phenom-
enological description of the particular process
in question.

Vfe present in this Letter the results of just
such an analysis of K» decays. Our main con-
clusions are the following:

(1) When compared with experiment, our theory
yields a symmetry-breaking parameter p (ana-
logous to the K-G parameter $) whose experi-
mental magnitude is p = 0.28+ 0.20. Since SU(3)-
symmetry breaking is expected to be of this
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order (a typical theoretical calculation predicts
p = 0.20+ 0.10), this number is much more under-
standable than the K-G value~ of $ = -0.85+ 0.20.
The "explanation" of the large experimental val-
ue of & is seen when the Kemmer matrix element
is expressed in terms of the functional form of
the K-0 matrix element. One then obtains an
"effective" K-G parameter $ =-p-0. 57, the 0.57
being a kinematic factor.

(2) Perhaps most importantly, we make the
definite prediction that the "effective" scalar
form factor f, has a kinematic zero at t= (m»

+ m, )2.

(3) The analysis can be extended to K» and
n, 2 decays and leads to a modified Callan-Trei-
man relation which improves agreement with
experiment.

The free Kemmer equation for a particle of
mass flan 1s given by '

(p 8+m)g{x)=0, g(x)(-p 8+m)=0,

where the P's satisfy an algebraic relation given
in Refs. (1) and (2). The equal-hme commutator
(ETC) of the Kemmer fields P(x) and g(x) is given
by

[q {x,0), y(x, 0)] = —P,P(x-x')+ m-'(P, P, + P„ tl, )(&/&x, )5'{x-x').

By contrast the ETC of the K-G field y(x) and the canonically conjugate field m(x) = B,p~(x) is

[n (x, 0), y(x', 0)]= -t5'(x-x').

(2)

(3)

From Eqs. (2) and (3) it follows that the Kemmer field g(x) transforms under the scaling operator D
as the sum of two terms having dimensions (mass)'" and (mass)', respectively, while the K-G field
y(x) transforms under D with a single-dimension {mass)'. As stated previously, this difference in the
scaling behavior of the K-G and Kemmer fields is the motivation for our calculation.

The matrix element T for the decays K(p)-m(p')+t(k)+u(q) is given by

T = (G/csin 8&71(P ')
I
1"~(0) IK(p)&t &,

where G = 10 '/m~' is the weak decay constant, 8=—0.2 is the Cabibbo angle, and t ~ is the lepton cur-
rent. In the Kemmer formulation the hadronic matrix element is'

& (p')ll', (0)IK(p)) = ( t /&~. 'I")'"-.(p'ge g,(t)+[,/( +t )]g.(t)] .(p),

(p p t)2 — q2

(5)

and various trace theorems for the Kemmer P matrices. " It is more instructive, however, to note
that the matrix element of Eq. (5) can be cast into a K-G form if we define effective form factors
f, (t) and f,(t) given by

f,(t) = [(m+ t )/2(m~)"']g, (t),

f (t) = [(m+ u)/2(mu)'"]g, (t)15-p(t)[1-t/(m+ p)']),

f (t) = [(m + p)/2 (m p )"'][1-t '(m + p)'] g (t)

h(t) =f (t)/f, (t); 5-=-(m-V)/(m+ V).

(»)
(7b)

(7c)

(7d)
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where m and p, are the masses of the kaon and pion, respectively, and the five-component free-parti-
cle spinors M»(p) and M, {p'}are normaIized such that u(p}u(p) = l. In the limit of exact SU{3) sym- '

metry g~(t) =0 and hence the parameter p{t)=g~(t)/ g~(t) m-easures the extent of symmetry breaking
in the K» system. For purposes of calculating p(t) it is convenient to introduce the scalar form factor
g.(t) -=g,(t)-[t/(m'- V')]g&(t).
It is a straightforward matter to show that the form factors g„(t) and g, (t) are determined (in the sense
of dispersion integrals) by 4~=1 and J =0 intermediate states, respectively. As is conventional,
we assume that in the physical region [mP ( t ~ (m-p)'] the form factors g, (t) (i = V, 8, 0) can be ap-
proximated by a linear t dependence, g, (t) = g,.(0)(1+@,t/p, '). The parameters g„(0), g~{0), p = p(0), y„,
y„and y, are, respectively, the Kemmer analogs of the conventional K-G parameters f, (0), f (0),
g = $(0), X„A, and X, which are defined in Ref. (4).

The parameter p can be obtained from experiment by directly squaring T in Eqs. (4) and (5) using
the relation

(P4(p)=(1/2 ') P.p(P P- ) (6)
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From Eqs (7) it follows thaf; the effective K-G symmetry-breaking parameter $ &s g&ven && terms of
p by

j=- j(0)= 5-p = -0.57-p.

Hence, a small positive symmetry-breaking parameter p in the Kemmer formulation of K» decay
would look like a large negative symmetry-breaking parameter g in the conventional K-G formulation:

p,„p,
—= + 0.28 + 0.20, $ „p,—= -0.85 + 0.20.

p can also be calculated theoretically in a manner similar to Fuchs, ' who assumes a once-subtracted
dispersion relation for both the K-G f, (t) and f,(t). Taking into account various possibilities for the
8-wave Km phase shifts he finds $ =—-0.20+ 0.10, which value is representative of the results obtained
from other calculations as well. Proceeding analogously and assuming a once-subtracted dispersion
relation for g~(t) and g, (t), we obtain

p,„„,-=+0.20+0.10, (,~...=—-0.77+0.10. (10)

Using Eqs. (7), many expressions of interest, such as the K„Daiitz-plot distribution, can be cal-
culated exactly for the Kemmer case from already existing K-0 expressions simply by replacing the
K-G form factors f»(t) by f»(t). In computing the K» rates, however, care must be taken in treat-
ing the t dependence of the effective form factors f, (t) which are not to be approximated by a linear
t dependence. Only the g, {t) shoul. d be linearly expanded while the remaining t dependence (which rep-
resents the "memory" of the Kemmer wave functions) must be treated exactly. Consequently the ex-
pressions for the K» decay rates have had to be integrated anew, and the results will be given else-
where.

From Eq. (Vc) we see that the effective scalar form factor f,(t) has a kinematic zero at t = (m+ p. )'
t, [barrin-g the highly unlikely possibility of g,(t) having an accidental pole at t,]. The presence of

such a zero is an unambiguous Pr ediction of the Kemmer foe mutation. It can be tested for either by
a careful extrapolation of f, (t) outside the physical region (when sufficiently accurate data become
available) or by looking for its effect in Kv scattering. ' In Fig. 1 we plot the function f, (t) for several
values of p along with the conventional scalar form factor f, (t) which is shown for several values of (.

We turn next to a discussion of the hypothesis of partialy conserved axial-vector current (PCAC) and
the Callan-Treiman (C-T) relation. ' In formulating the Kemmer generalization of PCAC we are mo-
tivated by two observations. First, the Kemmer (P, , a = 1, 2, 3, 4, 5) and K-G (y) solutions for both the
free-particle and m mesonic atom are such that g,(x) 0- y(x). Further, in the Kemmer formulation of
KWm coupling, ' the representation of the m field reduces to that of the a = 5 component of („and is
thus the same as the usual Pyg'p coupling. This leads us to assume PCAC in the form

s,a,.'(x) = C,q, .'(x),

where i = 1, 2, 3 is the isospin label and a is the Kemmer index. Then Eq. (11) maintains the corre-
spondence between the fifth component of the Kemmer field and the K-0 field since the a = 5 part of
Eq. (11) is the usual PCAC relation [with A~, (x) = —A„(x)/W2]. a=1, 2, 3, 4 corresponds to four-deriva-
tives of the usual relation. The matrix element for one meson to vacuum in the Kemmer formulation
ls

{0I& .' "(0)
I

'(P)) = P g, (p/P. I')"',.(P), (12

From Eq. (8) we then find g f,/(2p) and hence -G, ap f„where f, is —the usual pion-decay con-
starit. To derive the Kemmer form of the C-T relation for K' decay we begin by contracting the

pion field:

(~'(P')I&; *'(0)IK'(P)&=t{p/P. 'I')'"J&'« *""u{P')(iPP'+ u)&0IT[4.'(x)1"; "(0)]IK'(P)&. (13

Using Eq. (11) and the relations

u, (P ' = 0) = -5.,/W2, A ~,
' (x) = -A ~'(x)/W2

we find, in the soft-pion limit,

f, ( )mf(+mm) =fz/v 2f, (revised C-T relation).

(14)
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For the sake of comparison, the conventional
C-7 relation is'

f, (m')+f (m') =f~/W2f, .

If we assume that the form factors f,(t) and f,(t)
are sufficiently slowly varying functions (so that
we can replace the various form factors by their
values at t = 0), then the numerical values of the
left-hand side of Eqs. (15) and (16) are, respec-
tively, (0.39+ 0.20)/v 2 and (0.15+ 0.20)/v2 while
the right-hand side of each equation is (1.28
+ 0.06). Thus, although the agreement between
the revised C-T relation (15) and experiment is
not particularly good, it is nonetheless better

(16)

0.0

FIG. 1. The Kemmer "effective K-6" scalar form
factor fthm) and the K-6 scalar form factor fo(t), plotted
for various values of the symmetry-breaking param-
eters p and ( with y~=~+ =0.05 and yz =A, =0.025. In
each case the heavy lines correspond to the best fit
to experiment. The best fits agree in the physical
region m, ~ t ~ (m-p), but only with widely different
magnitudes of the symmetry-breaking parameters.
Note the clear prediction of a kinematic zero at t
= (m+p) in the Kemmer case, irrespective of the val
ues of p, yv, and ys.

than the standard relation (16) by a factor of
-2.6. Presumably the remaining discrepancy
between Eq. (15) and experiment can be attributed
to the variation of the form factors between t
=m~ and t =0. A more complete discussion of
the Kemmer formulation of K» decays will be
given elsewhere.
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