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gives a variety of prescriptions for deducing the
spin and parity of the lowest member of a three-
particIe muItipIet. These prescriptions, how-
ever, fail to describe the situation we observe
for "'Sb. e show in Fig. 1 the levels of "'Sn
observed by Flynn, Beery, and Blair using the
reaction "'Sn(t, P)"'Sn.' In "'Sb, a —", state can
result from coupling a g», proton to the 5 two-
neutron state in "'Sn. The principal component
of the wave function for the —", isomer could thus
be stated by [vv(lh»„2d„, ), w(1g7i, )]»„. It is
not clear why the —", state should be the lowest
member of a resulting eight-state multiplet.
Possibly configuration mixing with the '-,' mem-
ber of a six-state multiplet formed by coupling
a d„, proton to the 5 state of "'Sn could be re-
sponsible for stabilizing the 2' state with re-
spect to the ~' state.

As a consequence of the characterization of
this isomer, it is possible to suggest the pres-
ence of similar isomerism in "'Sb, to predict
an approximate 8- p.sec half-life for the 5 state
in "'Sn at 2054 keV, and to point to the need for
better theoretical treatment of s v' states and
other three-quasiparticle states.
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Hexadecapole Moments of Ne and Si from Scattering of 104-MeV n Particles
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We have measured the cross sections for the inelastic scattering of 104-MeV n parti-
cles from Ne and Si. The experimental results for the ground-state band have been
analyzed in terms of a coupled-channel calculation on the basis of the rotational model.
This technique proves to be quite sensitive to contributions of hexadecapole deformations.
Quadrupole and hexadecapole deformation lengths and their signs are determined for both
nuclei.

The deformation for nuclei in the first half of
the 2s-1d shell (A =20-28) is borne out by the
well-known rotational spectra, the accurate mea-
surements of y-ray transition probabilities and
of the static quadrupole moments for the 2'
states' ", as well as by the considerabIe suc-
cess of Hartree-Pock and Hartree-Pock-Bogolju-
bov calculations. '~ ' Some of the theoretical re-
sults"'8 suggest large hezadecapole in addi-
tion to quadrupole deformations. This is sup-

ported by the results of several experiments. '
Recently, a systematic analysis of inelastic scat-
tering of 24.5-MeV protons'4 brought definite evi-
dence for F, deformation of "Ne, '4Mg, "Si, and
"S. For Ne, an analysis of inelastic scattering
of 104-MeV n particles" on the basis of the Au-
stern-Blair model lead to the same result.

o.' particles are a good probe of the nuclear sur
face. The diffraction-type angular distributions
of the scattered o particles assure that the scat-
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Table I. Results of the analysis.

ea

20Ne b

Ne

28Sib

28S. c

98.4 1.35 0.74

104.7 1.25 0.66

97.1 1.39 0.65

98.1 1.40 0.65

1.22 0.82

109.7 1.27

23.1

1.77 0.63

1,82 0.48

1.69 0,57

1.36 0.77

1.55 0.61

1.52 0.65

- L30 +0,05
k O.N + 0.04

- (430 +&08
+ 0.0j. + Q, 01

Optical-model ag,alysis for elastic scattering.
Coupled-channel anal+sis for 0 RIll 2 states ~

Coupled-channel analysis for 0+, 2+, 4+ states in a 0+-2 -4+-6' coupling
scheme; Coulomb excitation included.

that the nuclear radius may be represented by

R =Ro(l+ p2I'2 + p»F» )

in the body-fixed system. On this basis the cross
sections of the lowest 0', 2', and 4' states are
analyzed with the coupled-channel method. For
most of the calculations a modified and improved
version of the coupled-channel code JUPITOH 1 by
Tamura is used. "'" A first set of optical-poten-
tial parameters was obtained by fitting only the
elastic cross sections. These parametex s, espe-
cially the imaginary part of the potential, have
to be readjusted in course of the coupled-channel
ealeulation. This is done by an automatic search
routine in the program. It is interesting to see
that the best fits of the 0' and 2' cross sections
already require a F~ deformation which is, of
course, more precisely determined from the 4'
cross section. Inclusion of the 6' state has little
effect on the calculated 0', 2', 4' cross sec-
tions. The final results calculated in a 0'-2'-4'
-6' coupling scheme including Coulomb excita-
tion are presented in Table I and are shown in
Figs. 1 and 2. In order to give an impression of
the sensitivity of the analyzing technique, calcu-
lated cross sections for different values of P, are
included in the figures.

For "Ne the choice of positive signs fox both

P, and P» proves to be the best. Other choices
result in much poorer fits with the parameters
of the complex potential strongly deviating from
those of the optical-model fits. For 288i the anal-
ysis favors the negative sign of the quadx upole
deformation parameter p, . This result supports
those of reorientation measurements in Coulomb

excitation of the 2' state. "0
Table II shows a comparison of our results

with results obtained by other experimental
methods or theoretical studies. As suggested by
Austern and Blair" the nuclear excitation is de-
termined by the magnitudes 5~ =P~R,. We there-
fore quote these values. The various results are
in sufficient agx cement though there is no reason
to assume that different particles see the same
surface structure of the nucleus. The main
source of uncertainty of our results is the strict
rotational-model description of the studied nu-
clei. The impexfection of this pictuxe is obvious
from the existence of low-lying vibrational states,
the lncons1steneles of transltlon aQd static mo-
ments (see Table II for "Ne), and the fact that
the B(E2,4'- 2')/&(&2, 2'- D') ratios deviate
from the rotational-model values. Therefore the
question arises to what extent the extracted P»

values may be interpreted as hexadecapole mo-
ments (either static or transition). This can only
be decided on the basis of additional information
and a more refined description of the studied nu-
clei.
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ZUI'ITOB 1. Two of us (H.R. and R.l..) wish to
thank Dr. P. E. Hodgson and his gx oup for their
kind hospitality during a short period at Oxford.
Here valuable coupled-channel calculations using
A. Hill's codes were performed which allowed a
cheek of Tamura's program. The excellent ser-
vice of the Atlas Computer Laboratory, Chilton,
Didcot, England is gratefully acknowledged. We
thank Mrs. G. Hoffmann, Miss U. Martens, and
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Table II. Experimental and theoretical results for the deformations of Ne and Si.
CC: Coupled-channel analysis. AB: Austern-Blair analysis, using the radius 8, =1.3
&&A 3 fm. HF(B): Hartree-Fock (-Bogoljubov) calculations. Where the sign is known,

it is explicitly given. For the calculation of the intrinsic quadrupole moments Q&0 from
B{82)and from the measured static moments of the 2' states, the rotational model is
as suxIled.

S2 a2R q
[fmJ Lb]

Method Ref.

+0.$5-0.01

0.42

Ne +0.$6

+0.47

+0.11-0.01

0.10

+0.04

+0.28-0.05

1.29 +0.40

1.49 0.56

1.27 +0.41

(n, n')CC this work

(a, a')AB

(u, u')AB

+0.4& (p, p')CC

0.69-0.04 B(E2,2 ~0 )

+0.84-0. 11 Reorient.

+0.35

+o. g4

+0.4y

+0.39

+0.14

+0.17

+0.54

19

-0.$2-0.01 +0.08-0.01 -1.25 (a, a')CC t;his work

28S ~

O. y6

0.45

0.41

(-)0.~4 +0.25-0.08

1 ' 79

(u, u'}CC

(d, d )CC

(p, p')CC

1.28 (-)0.54 {p,p )CC

0.$6-0.02 B(E2,2 ~0 )

-0.6$-0.18 Reorient.

$0

"0.29

-0.21 -0 ' 75

-0.84

-0.92

HFB

HF
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We have studied the Y7l' angular distributions for the reaction K d 77lN for the Y7i.

mass range 1850-1580 MeV. These data are used to study the EN—Yx amplitudes
below EN threshold. The analysis confirms previous SU(3) multiplet assignments for
the A(1520) and Z (1385), and indicates that the 80& channel is dominated by a repulsive
background with the A(1405) being a small effect superimposed on the background.
This conclusion is at odds with the usual R-matrix analysis of the low-energy EN data
but is somewhat supported by recent evidence from baryon-exchange production of the
a(1405).

Over the past few years considerable effort
has been applied to the extrapolation of scatter-
ing amplitudes below KN threshold. Recently
Dalitz has emphasized the possible uncertainties
in these analyses. ' In this Letter we suggest
another way of studying the low-energy region
using K scattering on virtual nucleons in the deu-
teron to obtain F~ mass values below KN thresh-
old. '

A different approach to the study of the below
KN threshold may be useful in deciding the dy-
namical nature of the A(1405) state. Again, as
recently stressed by Dalitz, ' there are two dif-
ferent viewpoints concerning the A(1405):

(i) The A(1405) is a virtual bound state of the
KN system. The nearness of KN threshold plays

an important role in the dynamical origin of this
state.

(ii) The A(1405) is a member of a supermulti-
plet whose dynamical origin perhaps derives
from forces between very massive objects such
as quarks. In this ease the nearness of the KN
threshold is not of dynamical significance.

These alternative dynamical explanations of
the A(1405) have also been discussed by Rajase-
karan. ' Previous analyses of low-energy KN da-
ta using the K-matrix formalism appear to favor
viewpoint (i)."As shown below, the results of
this work disagree with these extrapolation analy-
ses and favor the viewpoint expressed in (ii).

In a previous note it was explicitly shown that
the impulse approximation can be used to obtain
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