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We obtain the dimensions R, electron density distributions n Qr, and total ground-
state binding energies E of atoms and positive ions (nuclear charge Z, N electrons) in
intense magnetic Qelds. A variationally formulated Thomas-Fermi-like model is valid
for Z 3«10 ~B «10Z G; the choice n(r) -ZR o 4exp(-o), o =r /R, gives E = 15-0(8/
10 ) ~Z + eV, for neutral atoms. A crude variational calculation, valid for B»1 0~ OZ~,

gives E =-19.6N(Z-sN) lu (2B/10 ) eV.

The determination of the properties of atoms
and ions in an intense magnetic field' ' B has
assumed added importance with the discovery of
pulsars. We will be primarily concerned with
the regime within which a "one-dimensional"
statistical model is adequate, particularly for
the determination of ground-state energies.

Throughout, we restrict ourselves to a uniform
intense magnetic field B, taken to be parallel to
the z axis. For an electron in a field B, the
motion in the p, y plane perpendicular to 8 is
described by the Landau-level wave functions
P„(p, y). The (infinitely degenerate) ground-
state functions are given by P, -R (p)exp(imp),
where R (p)-ql~l exp(-&q') with q—= p/p, ps—= 2cN/
eB, and m = 0, -1, -2 ~ ~ . The energy separa-
tion between this level and the next is given by
bE =eBh/pc, where Iu is the electron mass. For
an atom or ion with nuclear charge Z and N elec-
trons, 8 will be called intense if ~E is so large
that the Coulomb forces do not excite the elec-
trons from the g, states (though they do deter-
mine the distribution among these states). The
electrons are tied to the magnetic lines of force;
the Coulomb field contains the electrons with
respect to their z motion.

Consider for the moment a single electron in-
teracting with the nucleus in the presence of the
field B. The effective one-dimensional potential
seen by an electron with quantum number m,
obtained by integrating Ze/r over R '(p), is
given roughly for lml» 1 by Ze/(z'+p ')"',
where p —=p Im)'" is the value of p at which R
is sharply peaked. This in turn is approximated
(and bounded) by Ze/(Izl+p ). The energy spec-
trum for this latter potential is known4 for the

p dimension of the orbit much smaller than the
z dimension, that is, for p «a, /Z (a, =h'/pe').
For fixed m this will be the case for 8 sufficient-
ly large. The spectrum includes eigenvalues
close to the Bohr levels associated with Ze/r;
in addition, it includes one (and only one) eigen-

value much below the lowest Bohr value, -Z'EH
(E H= 13.6 eV), given approximately by F.d„p
= —4E HZ ln (ao/Zp ). It is useful to define m
as the absolute value of that rn for which the p
and z dimensions are comparable, that is, for
which p =ao/Z. For p»a, /Z, that is, for
lml»m, a11 of the eigenvalues, including the
"deep" level, lie much above -Z E „.

It is important to subdivide intense fields into
what we shall call "ultrastrong" and "strong"
fields, For ultxast~ong fields, one has rn

»N, and all electrons can take full advantage of
the deep level states; the ground-state wave
function 0 is well approximated by all/0 (p,
q )g (z), where 8 is the antisymmetrization op-
erator, the nodeless functions g are those as-
sociated with E&„p, and there are N different
values of m. [The values of m may not be 0,
—1, 2, ~ ~ ~, —-(N—I); it is preferable to intro-
duce gaps if the reduction in absolute magnitude
of the energy of attraction of the electrons by
the nucleus is more than compensated for by the
reduction of the electron-electron energy of re-
pulsion. 'I For strong fields, one has m, „«N.
States with values Im I»m, „are much less
bound than the lower Bohr levels, and one then
expects only states with Irn I «N to be occupied
in the ground state; there are a number v(m)
of electrons associated with each such m, and
the associated functions of z have from zero up
to v(m)-1 nodes. It is then possible to ascribe
a meaningful estimate to the value of P„ the
z component of momentum, and it may therefore
be possible to use a "one-dimensional" statisti-
cal model for the strong field case.

Estimates of the total binding energies of atoms
and ions have not previously been given, but
for light atoms and B = 2.2 && 10"0—this will be
seen later to represent roughly the overlap re-
gion between strong and ultrastrong fields —the
binding energy of the last electron was obtained. '
Reliable estimates of the binding energy of the
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last electron, which may play a role in the de-
termination of the probability of the associated
ion being accelerated by the strong electric
fields near a pulsar, cannot be obtained in the
statisti. cal model to be considered.

Atoms in strong magnetic fields have also
been stud~ed. ' This case, our primary concern,
was formulated in terms of a differential equa-
tion which is the analog of that obtained in the
Thomas-Fermi (TF) approach. The limits of
validity of the TF-like approach were obtained,
as was the dependence of the dimension 8 of
the atom on 8 and Z. The approach contains an
approximation which does not seem to us to have
been fully justified, namely, the number density
of electrons n(r) is not restricted to be a super-
position of the Landau ~g, ~'. (This "ground-
state restriction" cannot be imposed in the dif-
ferential-equation approach. ) The approach is
made somewhat self-consistent by the require-
ment that the results obtained be accepted only
if the TF-like potential p(F) calculated is too
weak to excite higher Landau levels, but one
might imagine the unrestricted n(r) to give bind-
ing energies off by a significant factor even for
ey(F) small compared to hE for most r. (e &0
is the magnitude of the charge of the electron. )
We will show that use of the unrestricted n(r) is
entirely justified in the domain of validity of
the statistical model.

%e also use a statistical or TF-like model for
the strong-field case, but we use a variational'
rather than differential-equation formulation.
The ground-state restriction on n(r) is then
readily incorporated. Ions and atoms can then
be treated on the same basis' (though not neces-
sarily to the same degree of accuracy), that is,
one calculation suffices for all atoms and ions.
(It would be trivial to extend the approach to
high-density situations in which an atom is con-
fined to a given volume, as, for example, in
the outer layers of the crust of a pulsar. ) Fur-
ther, the calculation is not numerical; one can
eRsily obtain RI1 R11Rlytlc Rppl'oxi1nRtlon to n(r)
which is sufficiently simple and accurate to en-
able one to compute reliably certain atomic and
ionic properties. We will use the analytic n(r)
only to calculate the ground-state energy E„„
=E„„(z,w;a).

To perform the calculation, we need the con-
nection between the kinetic energy and n(r). We
note that the number of (otherwise free) electrons
per unit volume in a uniform field 8 with momen-
tum between p, and p, +dp, is' K8(p, )dp„where

K-=eB/8'e, p~=p„(F) is the Fermi momentum,
and 8(p, ) = I for lp, I &p~ and 9(p, ) =0 for Ip, I

&p F. It immediately follows that n(r) =2K& ~(F).
(Note that all electron spins are assumed to be
antiparallel to B.) Let 7', be the kinetic energy
Rssoclatecl wltll 1llotloI1 pR1'Rllel 'to B. [Bo'tll tile
kinetic (or magnetic) energy associated with
motion in the p-p plane and the energy of align-
ment of the electron magnetic moments with re-
spect to 8 are assumed to be unperturbed by the
Coulomb fields, and their sum serves as our
zero-energy reference level. ] T, is given by

T, = fd'r f(P, '/2 p)Ke(, P, )dP,
= e'L'fn'(r) d'r, (I)

where L'= v~a, p~-/6. E„„=T, + V,„+V'„ then be-
comes

E„„=e'(L'fn'd'r Zfnr -'d'r
+ 2 ff n(F)n(F')s d'rdsr'),

where s =- Ir-r' I
' and the subscripts e and n re-

fer to the electron and nucleus, respectively.
[The exchange contribution has been lost by the
use of n(r) rather than the correct wave-function
description. An estimate of the exchange term
can be obtained, ' in terms of n(r), but it is of
lower order in Z than the direct term and will
be ignored. j

The objective now is to minimize E„„=E„„(n(r))
with respect to parameters contained in an n(r)
which must satisfy the obvious conditions that
(i) n(r) ~ 0 for all r, and (ii) fn(r) d'r =N. The
ground-state restriction requires that the form
of n(F) be (iii) n(r)=Q 8 '(p)f '(z), where the
f (8) Rl'e arbl'tl Rl'y. . A fu1'tlle1' concllt1on ob-
tained from energy considerations, ' is that n(r)
be spherically symmetric. It then foIIows' that
n(r) =n(r'). We can now extract the dependence
of the dimension R and the energy E„„onZ, N,
and B. Since only one length, 1., is present, we
can always write n(r) = NR 'n "(x ), where x —= r/
B, n*(x') ~ 0 for all x, and fn*(x~)dx = 1. (R will
be proportional to I..) This satisfies all of the
necessary conditions, and we have

E =e'~ft W'(L/Z)'-Zv)Z '

where v= v,„-v„NZ ', and where t„v,„, and.
v„are dimensionless positive numbers indepen-
dent of Z, N, and B; further, we have v,„&v„,
and, assuming as we always will that X ~ Z,
we have v &0. The minimum value of E„„,ob-
tained for R/L = (6t,X'/Zv)"', is E„„=-5t,
&&X"'(-',Zv)"'e'/L. [Not1ce that 2V, = --,'(V,„



Voz.UMz 26, NUMazR 18

V„), which is just the virial theorem for a
spherical distribution of charged particles. ']
v is roughly independent of Z and N since v„N

&& Z ' is small compared to v,„(see later) and we

then have, roughly, R-(N'/ZB')"' and E„,,

—(NSZ'B2)"'. For neutral atoms (N=Z), v is
strictly independent of Z and N and we have ex-
actly, within the framework of the model, R
-B 2 5 g and E -+2/5Z9 5 These sealingsty

properties are to be contrasted with the usual
TF results, R-Z "3 and E~F-Z7'3.

A necessary and sufficient condition for any
function to satisfy the ground-state restriction
is that it be a function of x2 and fa11 off slower
than exp(-r'/p'). ' Since n(r') can therefore be
arbitrary, variation of n(r') in (2) gives, in the
usual way,

(3)

(po is a Lagrange undetermined multiplier. This
is the standard TF relation, p F'(r)/2 p, ep(r)—
= -ey» where p(r) is the total potential and y,
is a positive constant for ions' and zero for neu-
tral atoms; we now have a firm justification for
the TP-like differential-equation approach of
Ref. 1.

A heuristic argument may be helpful. The
most obvious possible extension of the standard
TF relation for the spherically symmetric situa-
tion to the case of an external field B is p FI(p, z)/
2p. -eq (p, z) = -ey, (p), the electrons adjusting
themselves, fo~ eac»al&e of p (their freedom
of motion in the p-y plane is rather restricted)
so that the maximum energy is the same. For
the validity of the statistical model, however,
we have seen that n(r) must be spherically sym-
metric, as must also p„(x) and q(r). It is then

clear, however, that p, cannot be y, (p) but

must be a constant.
The -Ze'/x behavior of -ey(~) as r-0 re-

quires n(r) to have an r "' singularity as x-0.
This is inconsistent with (iii)' but the TF-like
model ls in any event invalid near x —0, and we
will include this singularity in our choice of
n(r) simply to conform with the usual TF pro-
cedure" and since we believe that for ~ small
but not too close to the origin the falloff of n(r)
is well described by r " (The om.ission of the

singularity scarcely alters the value of E„„we
obtain and changes 8 by only 15 lo. ) The simplest
choice which satisfies all of the conditions is
n (~) = C(N/R') exp(-x')x "', where x =- ~/g and C '

=2nI (—,'). The minimum energy, achieved for
&=»&10 "{N'/ZB ')"'~ ' cm, where B„is
8 measured in units of 10~ 6, is E„„=-150
&& (1V~Z'B ')' ' ~' eV, where 7. = [—,

'—-'(N/Z)]"'
and therefore i = I for the neutral atom. (This
is to be contrasted with the usual TF result,
F. ~~= -20Z"3 eV. ) The analytic n(r) above agrees
fairly well with that obtained numerically' for
N= Z.

One relation between the numbers T„V,„, and
t/'„has already been noted. A second relation
follows in the same fashion as for the normal
TF model. " V„of (I) can be written as -2efn(r)
&&q, {r)d~r, or, using (3), 2V„=-V,„-37',-ego¹
Combining this relation with that obtained from
the virial theorem, we find for the neutral atom,
for which go=0, that t/"„= —3V,„. The use of our
analytic n(r) gives V„=-0.33V,„.

%e turn now to the range of validity of the sta-
tistical model, restricting ourselves for sim-
plicity of discussion to Ã=Z. One would expect
E„„to lie below the energy obtained by ignoring
~ and using the usual EYF result. This gives
B»10'Z"3 G. [An identical result is obtained
if one makes the demand, commented on earlier,
that ey (r) for all r but ~= 0 be much less than
the separation of the Landau levels. ] To obtain
an upper limit on 8, we again note that the sta-
tistical model can be valid only if it is possible
to define p, . It is not possible to do so if all or
many of the electrons lie in the deep-level states,
states characterized by nodeless z-dependent
functions, The condition for an electron not to be
ln such a level is p~ »ao/Z. Requiring at least
that an electron with a large value of Iml, say
2Z (which sees an effective change of order 2Z),
not be in a deep level gives 8 «10"Z' Q. A

similar result is obtained on applying the usual
validity criterion for the TF approximation,
namely, &p '(dy/dr)5 «1. The statistical model
therefore has a reasonably wide range of validity.
For 10'2 0, for example, it is roughly valid for
5S Z~ 50. Note that we expect the statistical
model to be valid even if a few electrons lie in

deep levels.
%'e make only a few brief comments on the

ultrastrong case. Simply ignoring V„gives a
ground-state energy E„) which ls R sum over
E p p

values, or, since the m dependence of the
argument of the logarithm can be dropped with-
out appreciable error for a,/Z»p, we have

E„,= -4Z'NE H ln'(a, /p) -=E'Z'¹ Treat-ing , the
electron-electron interaction as a perturbation
(even though it is not all that small), with 0 as
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the zero-order wave function, raises the energy
to E„,= E-'Z(Z ss-N)N. A preliminary variational
calculation improves this last result to F.„,=-E'
x(Z-&N) ¹ A possibility of gaps in filling in m
states will surely change the numerical coeffi-
cient, but may well not affect the Z and B depen-
dence of E„„which is qualitatively different from
the B and Z dependence of E„„.
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We write nor =np(~) +n'Qr, where np(s) is the aver-
age value of the non-negative n Pr) with respect to in-
tegration over angles and is therefore itself non-nega-

s'

tive. Since the angle average of n' Pr) vanishes by def-
inition, the difference between E(nor) and E(np(r))
is given by 5=e Lpl+V«', where I=f [Bnp( }p+n pr)]
&&n' Qr dP~ is clearly non-negative. V«' is obtained
from V«by the replacement of each n by n'. Using
t -fdPkexp(ikt)/k2, where t= r-r—', we have that
V„' is approximately the integral over 4 space of the
square of the absolute magnitude of the Fourier trans-
form of n' f) . Since it is readily shown that for any
n P~) satisfying {iii) the associated np(~) also satisfies
(iii), and since {ii) is a condition on np(r) only, it fol-
lows that n Pr) =n(r). Combined with (iii) again, it can
then be shown that (iii)' n(r) =n(r ) . [Note that for
0 & y& 1, we have exp(-yr /t) ) -QR 2(p) exp(-n I m I

-ys /1} ), where y= 1-exp(-a), and 0 & a & 1.]
~The standard virial theorem, even in the presence

of a magnetic field, gives 2T~ =z (BV/Bz) =~(BV/Br)R,
F =—1-p /rP, and averages understood For. a spheri-
cal distribution, I =3. For the ultrastrong regime,
unless states with very high m are considered, F =1.

Attempts to improve the ordinary TF model by the
omission of the corresponding {unphysical) r 3 singu-
larity have proved successful. See J. Goodisman,
Phys. Hev. A 2, 1193 (1970).

Section 70 of Bef. 6.

Fragmentation Models for Inelastic Lepton-Hadron Scattering*

H. T. Nieh and Jiunn-Ming Wang
Institute for Theoretical Physics, State University of Net York at Stony Brook, Stony Brook, Neu York 21790

(Heceived 9 March 1971}

We propose models for deep inelastic lepton-hadron scatterings, incorporating the gen-
eral ideas of the fragmentation picture. Approximate scaling behavior can be accommo-
dated at present values of the momentum transfer. But at larger momentum transfers,
significant deviations from scaling are expected. In contrast to the results of the parton
model, a scaling behavior for the average multiplicity and the structure functions at
fixed multiplicities is not possible, according to the fragmentation picture. We present
results of our model regarding the average multiplicity and the structure functions.

One of the important features of the deep in-
elastic electron-scattering data" obtained at
the Stanford Linear Accelerator Center (SLAC)
is the approximate scaling behavior of the struc-
ture functions in the deep inelastic region, a fea-
ture first hypothesized by Bjorken. ' This scal-
ing property has been the focal point of many re-
cent theoretical discussions. Inelastic muon-

proton scattering experiments' are now being
planned and are to be carried out at the National
Accelerator Laboratory (NAL) at much higher
energies than are presently available at SLAC.
These experiments should be able to provide ad-
ditional crucial tests of the scaling hypothesis
and, moreover, yield valuable information about
the more detailed properties of the final hadron
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