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We present a class of scattering amplitudes which are dual and crossing symInetric,
have Regge asymptotic behavior and second-sheet poles for resonances in all channels,
and satisfy a Mandelstam representation with correct double-spectral-function bound-
aries. The Regge trajectories and residues are essentially arbitrary.

In the following we describe a class of scattering amplitudes. They possess the set of properties
connected with crossing symmetry and duality that has recently led to interesting algebraic and sym-
metry-type results, ' and they simultaneously possess some dynamical properties related to unitarity.
In particular, all resonances occur as second-sheet poles, the threshold behavior is correct, and the
amplitudes can be written in the form of Mandelstam double dispersion relations with correct double-
spectral- function boundaries.

Before we present the detailed results we would like to note several implications of this work.
First, it finally gives us a scattering amplitude that is Regge behaved, is crossing symmetric, and
has a Mandelstam representation. To find such an amplitude has been a basic problem in particle
physics. It may lead to new insight into the meaning and uniqueness of bootstrap ideas to have an am-
plitude that satisfies all the conditions that are usually postulated except unitarity. This amplitude has
still an essentially arbitrary trajectory and residue; they will be related by unitarity.

Second, we show that a dual, crossing-symmetric, Regge-behaved, etc., amplitude can be construct-
ed; it has all of the conditions that are put on the Veneziano amplitude, but is is not unique at all.
Thus many speculations on the meaning of the Veneziano model and on duality must be reconsidered.
Fermion channels may be included in our model by v u dependence in the residue and trajectory.

Third, the present amplitude is suitable for phenomenology without modifying any of its good proper-
ties; e.g., it already has second-sheet poles. Thus any relevance to experimental data can be tested
unmibiguously.

We proceed by exhibiting the amplitude and its properties, with proofs briefly indicated. Consider,
for equal-mass scalar-meson scattering [for simplicity assume a process with exotic u channel; or
else add M(s, u) and M(u, t) to M(s, t) just as in the Veneziano model],

1

M(s, t) =g dxx " '" i(1-x) " '" 'f(sx)f(tx'), x'=1-x, (1)

where n represents a (complex) Regge trajectory, f(y) and n(y) are real for y & 4m' and analytic at

y =0, and have threshold branch points for y =4m'. f(y) satisfies the condition that as y becomes in-
finite anywhere in the physical sheet f vanishes faster than any inverse power of y. The condition is
sufficient to guarantee the convergence of all integrals of interest. For example, ' one might use u(y)
= n, + n'y +y(4m' —y)'~', and f(y) = exp[ P(4m' y)' -]. Fo-r trajectories with a positive intercept f will
also contain a factor proportional to n(y), removing the spin zero pole.

The properties of M(s, t) include the following:

(1) Regge-pole asymptotic behavior in all channels. This is easily shown by a change of variables p,

= —sx, which gives M = (—s) "~'~G(t) in the limit as ~s ~

—~, with G a convergent integral, G(t) =f(t)
xf,"p ""' 'f( })d}. -

(2) Crossing symmetry. After putting s —t, change variables x —1—x.
(3) Second-sheet resonance poles in all channels. The poles arise from the end-point singularity

near x =0, and are of the form 1j(n-cr). Since Imn t0 they are explicitly second-sheet poles.
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(4) The pole residues in one variable are polynomials in the other, even with complex trajectories.
There ax'e no ancestors.

(5) The amplitude is exchange degenerate. The appropriate representation for exchange-nondegener-
ate processes is clear.

(6) The correct threshold behavior is explicitly included in the choice of n and f.
(7) Remarkably, the amplitude also has Mandelstam analyticity. To see this, note that for s, f 4m'

we have M(s t) real. For s ~ 4m' and f &4m' we find a discontinuity arising from Imn or from Imf,
from the region of integration x ~ 4n s. This discontinuity itself will have a nonvanishing discontinuity
in f when t(l-x) ~ 4m' with x ~ 4m'/s, or with the boundary curve

which is the conventional boundary' of the double-spectral-function region for scalar-meson scattering.
{8) The generalization to the N-particle problem is similar to the corresponding situation in the

conventional Veneziano model. The X-particle amplitude is given by

M- fdgII [u
" '"" 'f(s u')] u'=I-u {2)

where the product is taken over all planar channels and dp, is the invariant Veneziano measure. ' The
explicit form of the five-point function is then

f, dxd x, dx, dx, dx5( x, +x, x,-l)5( x+ x, x,
- )1&( x, +x, x,-l) II [x; ~" ~ '+'"~ ' 'f(s, ;,,x }],i=1

x '=1-x
where s,. ;+, ——(P;+P;+,) . The factorized form of the integrand in (2) is sufficient to guarantee factor-
izati. on at spin-0 and spin-I poles on the leading trajectory. Beginning at spin 2, degenexacies appear
(still no ancestors). We do not want to speculate on the physical meaning of such degeneracies.

(9) The amplitude satisfies duality in the conventional sense. The same term contains Regge poles
in the crossed channel at high energy and xesonances at low energy.

(10) Amplitudes with Regge-pole asymptotic behavior in one channel and Regge-cut asymptotic be-
havior in another, or cut behavior in both, can be simply constructed, without affecting the Mandel-
stam analyticity. The obvious generalization of (1) to include Regge cuts is

M (s, f) = f,dx f„'"djf„'"dj'x ' '(1-x) " 'h( j, sx)A( j', f(1-x)),
with appropriate conditions on h. h( j, sx) =f(sx) 6(j-o.(sx)) gives formula (1), while h( j, sx) =f,(sx)
x ~(j-o'(»))+f,{j,»)8(o', (»)-g) would give a pole plus cut model. In a paper in preparation we will
discuss the combination of terms that can describe expex'imental data simultaneously at high energies
(where it is known that strong absorptive cuts are needed) and in the resonance region.

(11) At fixed angle 8, as s - ~, the amplitude behaves like the input function f(s), up to a polynomial
in s. So this function not only falls faster than any inverse power of s, but it can be chosen, as in our
example, to obey also the Martin lower bound M(s, 8) & c, exp(-c, Ks). This latter property is not
shared by the Veneziano model.

(12) The Adler zero' can be included. If m, =0, then as the four-momentum of one pion becomes
zero, M (s, t) -M (0, 0}, and

M(0, 0) =j(0)'f,'d '" '(1- ) '" ' =j(0)'I'(- (0))/I (-2 (0)).

For n(0) =&, M(0, 0) =0.
(13) Below the leading trajectory one finds parallel daughter and higher multipole trajectories (twin

daughters etc.). The latter arise because the expsIlslon of the 1ntegrand near x = 0 contains terms
proportional to

(sx)'x '" '(lnx)", with n ~k.

Thes«erm»ead to contributions -s'/[j-n+n+0]' '. Since n ~ 0, and since lnx is always multiplied
by x, these multipoles do not occur on the leading tx'ajectory. It is not clear whether these multipoles
are a good or a bad feature. However, we would like to speculate that they are closely connected with
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the presence of the correct double-spectral-func-
tion boundaries. Indeed, both these features
arise from the fact that in Eq. (1) s is always
multiplied by x and t is always multiplied by 1-x.
Consequently they can be interpreted essentially
as a manifestation of unitarity properties. In this
connection we note that at n =1 at the first daugh-
ter level there is a sum of a simple pole and a
dipole. If one treats these as the first two terms
in an expansion of a shifted simple pole, ' then the
shift is indeed generally in the direction to de-
press the daughter trajectory. That is, if we put
a/(I-n)+b/(1-a)'=c/(1-n+e) we find that I n-
+e vanishes beyond the point at which 1-n van-
ishes.

We want to emphasize that the essential im-
provements here arise by always associating s
and t with x and 1-x, respectively (we call this
s-x duality). This enables us to work with dual
but nonmeromorphic amplitudes (with no ances-
tors), to find many features associated with uni-
tarity, and still provides us with a straightfor-
ward generalization to N-particle processes.

There have been several previous attempts to
"smooth" the Veneziano model. All of these at-
tempts have had difficulties not shared by our
model. These difficulties include lack of Regge-
pole asymptotic behavior, ' undesirable Regge
cuts, ""essential singularities, "and trajecto-
ries which are complex straight lines, even be-
low threshold. '

We do not consider the lack of uniqueness
which characterizes our model [arbitrariness in

n(z)] as a, bad point. Indeed we can argue that
since unitarity is not yet fully satisfied the am-
plitude has no rea, son to be rigidly fixed, even in

a bootstrap context. Pn the other hand, for phe-
nomenology the lack of uniqueness has to be un-

derstood as generality and flexibility. At least
we can say that our proposal is a counterexam-
ple to several common beliefs related to duality
(e.g. , "duality implies linear trajectories, "
"duality and crossing symmetry are sufficient to
completely constrain the amplitude, "

~ ~ ). These
statements are usually made in the context of the
meromorphic approximation. We believe that the
departure from this approximation is necessary
for the full understanding of duality, and of
course changes some of its features.

A decade ago it was fashionable to construct
scattering amplitudes that approximately satis-
fied elastic unitarity (at the expense of crossing),
perhaps via, an N/D calculation. More recently,
amplitudes have been studied that have crossing

symmetry and even duality, but which badly vio-
late unitarity. Amplitudes of the form of Eq. (1)
may allow a synthesis of these viewpoints. They
are as useful as the conventional Veneziano am-
plitudes for studying algebraic and multiparticle
techniques. On the other hand, they can be used
for a phenomenological description of experimen-
tal data in any region since they do not grossly
violate any known property of scattering ampli-
tudes. Because of the Regge asymptotic behavior
and the existence of a double dispersion relation,
they are suitable for N/D calculations where
elastic unitarity is exactly satisfied in one chan-
nel.

Indeed, one could hope" that by including
crossing symmetry explicitly, and by including
unitarity approximately through the presence of
second- sheet resonance poles, correct double-
spectral-function boundaries, and Regge-pole
plus absorptive Regge-cut asymptotic behavior,
the remaining corrections to the amplitude will
be sufficiently small that one has a good phenom-
enological description of experimental data in all
regions.

We would like to thank D. Richards for useful
discussions and a careful reading of the manu-
script.
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To guarantee good threshold behavior one must be
more careful, using, for example, u (y) =&'y +@(4m

(X 0! 2
1

2 1 1

-y) '+ "0+ I +", and f(y) =exp(-I6[(4m -y)'+t(6m~)')')
+exp(-P [(4m'-y) ' -i(6m') ']') .

To get the precise boundary for the scalar case a
translation is necessary: The boundary is given by
(s -4m~) (t -4m ) =16m in the present case, but actu-
ally by (s -4~ }(t -4m ) =4m . We can get the precise
boundaries by using, in Eq. (1),f{sx+2m (1-x)), f(t (1
-x) —2m'x), aud the same changes in the argument of

This changes the residue structure at the daughter
level. For real problems such as 7[7[ and mN scattering,
where the double-spectral-function boundaries are a
sum of two regions, we can have the exact boundaries
in the pole-plus-cut models referred to under (10)
above. There may not be a reasonable way to put them
in terms of the form of Eq. (1).

Chan H.-M. , CERN Report No. TH.1057, 1969 {to be
published) .

5Complete factorization along the leading traj ectory
can be achieved by a suitable choice of functions f,
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e.g. , f(sx) =c'". This changes the form of the Regge
residues and alters the fixed-angle behavior.
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We have performed experiments with very low-frequency parallel resonance circuits
which, subject to some questions of theoretical validity, set a new upper limit for the
photon rest mass of 10 g. This value is more than an order of magnitude smaller
than the previous limit established by satellite measurements of the Earth's magnetic
field.

Experimental and theoretical attacks on the up-
per limit of the photon rest mass have enjoyed a
renaissance that has been very recently and ex-
pertly reviewed by Goldhaber and Nieto. ' In sum-
mary, by far the most sensitive tests to date de-
rive from the fact that the existence of a photon
rest mass introduces a Yukawa factor, e
into the 1/r terms for the electrostatic and mag-
netostatic potentials. The length A0 is identified
as a photon "Compton wavelength, "

A, =h/mc,
where m is the supposed rest mass. The most
recent and sensitive explorations' of the validity
of Coulomb's law yield an upper limit of 1.05
x10~o cm for Ao (2x10 '

g for m), and an analy-
sis' of the best satellite measurements of Earth' s
magnetic field provides a limit of 5.5~10" cm
(4xl0 4' g).

In this paper we wish to describe a "table-top"
approach to the experimental problem which, if
our theoretical speculation proves sound, has
now provided a limit of about 2x10" cm (10 "

g)
and could readily be extended several orders of
magnitude. Our premise springs from early ex-
periments reviewed by Rosa and Dorsey in 1907
in which the phase velocity of light was deter-
mined by experiments with resonant circuits, the
dimensions and resonant frequencies of which
were the measured quantities. (A more tradition-
al way of describing this work is to refer to it as
a measurement of the ratio of the electromagnet-
ic to the electrostatic units of charge, which
ratio is the velocity of light in massless electro-

m'2 =~ '+co '
0 c ' (2)

This equation predicts, not surprisingly, that the
lowest resonant frequency of a cavity is w„ irre-
spective of the size of the cavity. This simply
reflects the fact that the phase velocity becomes

magnetic theory. ) We extend the spirit of this
method by exploring the behavior of very low-
frequency resonant circuits, thereby establishing
a limit to deviations of the phase velocity of light
and hence an upper limit to the photon rest mass.

It is easy to demonstrate' that the free-space
phase velocity of light v~ is related to the angular
frequency ~ by

(v /c)' = (u'/(to'-u), '),
where u, =2nc/&0. (This definition of &u, can be
rewritten as ~~, = mc', which provides a glimpse
of massiness. ) Let us now contemplate an evac-
uated conducting cavity one of whose resonant
modes has frequency ~0 in the massless electro-
magnetic case. We seek an expression for the
resonance frequency &' of this mode for the
massy case. Since the relation between phase
velocity, frequency, and wave vector k is always
v~=&u/h, and since the values of h for the various
modes of this cavity are determined by geometry
rather than by mass, we see that the change in
the resonant frequency is strictly proportional to
the change in phase velocity. Specifically, ~'/~o
=v /c. Equation (1) now yields promptly the im-
portant r elation
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