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number of independent degrees of freedom. All
comparisons were made in the absence of signifi-
cant time-differencing errors. ' The advantages
of the Galerkin approximations are enhanced
when compared with the more commonly em-
ployed second-order finite-difference approxima-
tions. Also, if very accurate (or moderately ac-
curate long-time) simulations are required, the
Galerkin approximations offer the advantage of
giving infinite-order approximations [cf. Sect.
(1)j to infinitely differentiable flows.

In this Letter, we describe infinite-order ac-
curate and efficiently implementable Galerkin ap-
proximations to flows within slabs with rigid
boundary conditions. We remark on the exten-
sion to flows in cylindrical and spherical geome-
tries below. Instead of expanding in series of
trigonometric or Chandrasekhar-Reid functions'
(that exhibit Gibbs's phenomenon in some veloci-
ty derivative at rigid boundaries), we expand the
flows in Chebyshev polynomials.

(1) Some properties of expansions in orthogo
nal polynomials. Consider a —function v(x) having
derivatives of all orders for ~x ~

& 1 and one-sided

This Letter introduces infinite-order accurate and efficiently implementable Galerkin
(spectral} approximations to time-dependent incompressible flows within slabs, spheres,
and cylinders with either rigid no-slip or free-slip boundaries. The unusual choice of
Chebyshev polynomials as Galerkin expansion functions is crucial for the efficiency of
the method.

Numerical simulation of time-dependent incom-
pressible flows in slab, spherical, and cylindri-
cal geometries is of much current interest in
fluid dynamics. Applications include studies of
nonlinear effects in rotating fluids, nonlinear in-
stability, and turbulence. For flows in slabs
with either periodic or free-slip boundary condi-
tions, it has recently been shown' 4 that Galerkin
(spectral) approximations obtained using expan-
sions in Fourier series permit substantial eco-
nomies in both computer time and storage neces-
sary to achieve reasonable standards of accura-
cy. It has been demonstrated3 that, in n space
dimensions, fourth-order finite-difference ap-
proximations [i.e., schemes for which the error
due to using a discrete space variable is O(dx ),
where ~ is the grid scale] require at least 2"

times as many degrees of freedom to achieve
reasonable accuracy as Galerkin (Fourier) ap-
proximations; on the other hand, recent improve-
ments2'4 in the transform methods used to imple-
ment the Galerkin equations have made computa-
tion times per time step comparable to that of
finite-difference simulations involving the same
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derivatives of all orders at x =+I [though v(x)
need not be analytic]; the properties stated be-
low must be weakened accordingly if v(x) has
only a finite number of derivatives. Let T„(x) de-
note the nth-degree Chebyshev polynomial of the
first kind. It is possible to expand v(x) as'

v(x) = Qa„T„(x),
n=o

a„=k„f,e(x)T„(x)Ec(x)dx,

where k„=2/nc„, c, =2, c„=l (nw0), andw(x)
=(1-x') '". It may be shown' that

Chebyshev expansions do not exhibit Gibbs's phe-
nomenon in any velocity dexivative at xigid bound-
aries if v(x) is infinitely differentiable. Exactly
the same results hold for expansions in Legendre
polynomials' and deride classes of other orthogo-
nal polynomials.

(2) Gat8tkEn (Cksb$8k85) aPPtox2matlons to in-
comPressible flocus. —The Navier-Stokes equa-
tions for incompressible flour are

Bv~/Bt +B(ties v~)/Bxg = —Bp/Bx~+ PV v~~

Boa /Bx 8 =0,

a„=O(1/n~) (n-~)

for any finite number P. Since
~ T„(x)(

~ 1 for [x )

~ 1, it follows from (2) that the remainder after
N terms of (1) decreases faster than any power
of I/N, uniformly for ~x~ ~ l. In this sense, the
orthogonal expansions are infinite order. Since

d'T„(x)/dx' =O(n") (n —~)

for any integer q, it follovr s from the known con-
vergence' of (1) to v(x) for ~x ~

- 1 and from uni-
form-convergence arguments that the Chebyshev
expansion may be differentiated termwise any
number of times for lxl ~ l. In other words,

where v(x, t) is the three-dimensional velocity
field, f is the pressure (normalized by the densi-
ty), and v is the kinematic viscosity; repeated
Gxeek subscripts are summed over their range,
0' =1, 2, 3. To be definite, &re choose periodic
boundary condltlons w1.th pex'lod 27t' 1n s~ and x2
and no-slip conditions (v =0) for x, =+I, although
this choice is not crucial Let.a set of (nonor-
thogonal) polynomials be defined by

q,„(x)= T,„(x)-T,(x),

q, „„(x)= T,„„(x)-T,(x)

for n ~ 1 so that q„(+I) =0. We seek an approxi-
mate solution to (4) of the form

v„(x, t) =Pu (k» k» n, t) exp[i(k, x, +k,x,)]q„(x,), (7)

wher«he sum Z ex«nds ove»1»n«rge» k„k„»«satisfying the inequalities Ik, I «„ Ik, I «„
and 2 ~ n ~

¹ E» E» and N are integer cutoffs. The expansion (7) automatically satisfies the im-
posed boundary conditions although it should not be expected that exact solutions to (4) are represent-
able in the truncated form (7). Similarly, the pressure is expanded in a series of the form (7) with
coefficients P(k„k„n, t).

Approximate equations to determine the time evolution of u„{k„k„n,t) are found as follows: Sup-
pose that the Navier-Stokes equations are written in formal operatox form as Nv =0, and let the expan-
sion functions in (7) be denoted by t/)'&+". The Galerkin equations are (Nv„, g ~+") =0, where (7) is for-
mally substituted for v in the Navier-Stokes equations and (f,g) is the inner product over [0, 2m]&& [0,
2w]x [-1,1]with weight w(x, ). The equations found by this procedure are most simply expressed by
introducing the notation

u ~(k» k» 0, t) = —Pu (k„k2, 2m, t), u (k» k» 1, t) = —gu (k„k„2m + 1, t),

where we choose K =2M+1; hence q„(x,) is replaced by T„(xs) in (7) if the sum on n ranges on 0 ~n ~¹
%e also define

u (k„k, n, t) =c„u ~(k„k„ i n i, t)

for ~n ~
«A, where c„is defined after {1).
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After some considerable algebra, the Galerkin equations. become

ac„—u„(k„k„n, t) =b „"(k„k„t)-i(6, +b, )c„k p(k„k„n, t)-25„,
m=n+1

m+ n=l (mod 2)

mp(k„k„m, t)

2
--,ip k,.p'u, .(p„p„m, t)u (k,-p„k,-p„n-m, t)

2-2

(10)
m=n+ 2

m=-n |'mod 2)

-Q"(m, +m, )u, (p„p„m„t)u „(k,-p„k,-p„m„ t) vc„—(k,'+k, ')u „(k„k„n,t)

+ v Q m(m'-n')u (k„k„m, t),

Pik&c„u,.(k»k2, n, t)+2
m =n+I

m + n =1 (m o d 2)

mu, (k„k„m, t) =0,

where 5, , =1 if i =j; b, , =0 if i'; p' indicates
a sum over all P„P„m satisfying -K„&P„,k„
-P„&K„(r=1,2), -¹m,n-m &N; Q" indicates
a sum over all p„p» m„m„satisfying -K„
&p„,k„-p„&K„(r=1,2), -N- m„m, -N, m +m,

=b „(k„k2, t) if n =- 0 (mod 2), and b „"(k„k2,t)
=b '(k„k»t) if n—= 1 (mod 2). Equations (10) and

(11) hold for ~k„~ &K„(r=1,2), 0-n-N. The
quantities b „'(k„k„t) and b '(k„k» t) are deter-
mined in terms of u and P by the constraints (8)
that follow from v =0 for x, =+I, while p(k„k„n,
t) is determined by the constraints (11). It fol-
lows from (8) and (11) that the Galerkin approxi-
mation (7) satisfies Bv,/&x, =0 exactly at x, =+I,
as required by (5).

The relatively simple convolution form of (10)
follows from the relations'

2T„T =T„, +T~„(, T„'=nU„» (12)

ZT,.= 2+ 2U, „,
m=O

—jrT
2m+1 2 2n+1t (13)

where U„ is the nth-degree Chebyshev polynomial
of the second kind.

It is easy to see that the terms P' and P" in
(10) require essentially no more work than if
periodic boundary conditions were applied in all
three space directions. First; note that P" is a
simple accumulation of sums of the form Q'.
Second, transform methods4 reduce evaluation of
all the required g' (P") sums in (10) for n =1, 2,
3 to eighteen real or conjugate-symmetric dis-
crete Fourier transforms on 2K, x2K2&N points.
Each of these transforms may be evaluated by the
fast Fourier-transform algorithm' in order K,K2
XN log2(K, K2N) operations. It may be shown that
evaluation of the other terms in (10) and evalua-
tion of b', b', and p by the constraints (8) and

(11) requires only an additional O(K,KjV) opera-
tions. Consequently, numerical integration of
(8)-(11) requires little more computer time than
integration of the equations with fully periodic
boundary conditions and the same number of in-
dependent degrees of freedom.

A similar application of Galerkin's procedure,
using Chebyshev polynomials as expansion func-
tions in radius for flows in spherical and cylin-
drical geometries (including shells), gives equa-
tions of convolution type with only minor compli-
cations. The crucial facts here are (12), (13),
and the recurrence formula x '(T„„+T„,) =2T„,
which shows that division by x is readily accom-
plished within Chebyshev series. For flows in
spherical geometry, it is necessary to expand
the angular dependence in a surface-harmonic
expansion; in cylindrical geometry, Fourier ex-
pansions are required. Transform methods"
also apply here to speed the evaluation of the Ga-
lerkin equations. These Galerkin equations for
flows within spheres and cylinders encounter no
numerical difficulty at polar axes, i.e., there
are no mapping singularities or stability prob-
lems due to convergence of the mesh near the
axis. It is also possible to use Chebyshev ex-
pansions efficiently with "stretched" coordinate.
systems that give finer resolution within, say,
boundary layer s.

(3) Some numerical results. —A simple compar-
ison between the Galerkin (Chebyshev) and finite-
difference methods is obtained for the one-di-
mensional wave equation

Bv(x, t)/st+ av(x, t)/ax =0, v( I t) =y(t), (14)

for ~x~ & 1 with v(x, 0) given. The Galerkin (Che-
byshev) approximation to (14), gotten by tech-
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niques similar to those of Sect. (2), is

c„da„/d t = (-1)"b(t) 2-
m=n+1

m + n =g {m0 d 2)

(o-n-N),
where the Galerkin approximation is

u(x, t) = Qa„(t)T„(x),
n=0

and where b(f) is determined from the constraint
u(-1, t) =f(t).

It is possible to prove rigorously that the ap-
proximation obtained by (15) is an infinite-order
approximation to the exact u(x, t) (provided the
latter is infinitely differentiable). First, it is
shown that the column vector 5, whose compo-
nents 5„(n =0, ~ ~ ~, N) are the differences between
the exact and Galerkin Chebyshev coefficients,
satisfies a linear inhomogeneous equation of the
form d5/dt+LS(f} =h(t}, where L is a constant
(N+1) &&(N+1) matrix and h(t) depends only on the
exact Chebyshev coefficients for n &¹Next, it
is shown that the eigenvalues of L have non-nega-
tive real parts, so that convenient error bounds
on the Galerkin approximation are gotten in
terms of bounds on h(t). The results of Sect. (1)
are used to show that, as N-~, h(t) tends to
zero faster than any power of 1/N, so the same
is true of the error 6(t). The convergence proof
just given extends to quite a wide variety of prob-
lems. "

Accuracy of simulation of the solution to (14)
with f(t) =sin(Mmt) is an effective test of phase
errors in numerical schemes. ' With this choice
of f(t), the solution to (14) for f ~ 2 is exactly
v(x, t) = sin[Me(t-x-1)) for ~x ~

- 1, independently
of u(x, 0). Since the exact Chebyshev coefficients
of this v(x, f) are expressible in terms of Bessel
functions as a„=(2/c„) sin[(&-1)M~2 nm] J„(Mm) for
t» 2, it follows that the exact coefficients de-
crease rapidly with n for n ~Mr. Therefore, it
should be expected that (15) gives accurate re-
sults for N~ Mn. Since there are M complete
waves in the interval [-1,1], it follows that at
least m degrees of freedom per wavelength are
required for accurate simulations.

Equation (15) was solved numerically to check
this latter prediction. Notice that the calculation
of the right-hand side of (15) requires only O(N)
operations per time step. Define F. as the rms
error in u(x, f}, ~x~- I, at t=5. The numerical
results are that for N =27, M =8 [(N+1)/M =3.5
degrees of freedom per wavelength], E =1.2

&&10 ', while for N =31 [(N+1)/M=4], E = 7.1
F10 ~, and for N=35 [(N+1)/M=4. 5], E =2.7
X10 4. Clearly, the error decreases rapidly
with 1/N .Analogous quantitative results have
been found for several linear boundary-layer
problems. '

On the other hand, a centered fourth-order fi-
nite-difference scheme with careful application
of the boundary conditions (exact values at all up-
stream points and stable fourth-order one-sided
differences downstream) gives the rms error E
= 5.0&&10 ' with forty grid points and M=4 (ten
grid points per wavelength), and E =3.5&&10 '
with eighty grid points and M =4. Also, a cen-
tered second-order scheme gives E = 9 x 10 ' with
120 grid points and M =2. It may be shown that
these rms errors are roughly proportional to M
for fixed numbers of grid points per wavelength.
More detailed theoretical and numerical compar-
isons between the Galerkin approximations intro-
duced here and finite-difference approximations
will be given in a later paper.
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