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We calculate a general expression for anomalous resistivity due to weak electrostatic
turbulence in a plasma. In the case of ion acoustic turbulence, it is shown to reduce to
the heuristic result of Sagdeev. Applications to perpendicular collisionless shock exper-
iments are discussed.

The heating of electrons by superthermal fluc-
tuations in a plasma has been observed in sever-
al experiments. " This turbulent heating may be
described in terms of an anomalous resistivity
g* which can be orders of magnitude larger than
the resistivity due to electron-ion collisions.

To calculate g*, we consider a stochastic mod-
el in which energy is transferred from the waves
to the particles by small-angle, random scatter-
ings of the electrons by the fluctuations. We as-
sume a homogeneous plasma and a given spec-
trum of turbulence. (The inclusion of self-con-
sistent fields is a much more difficult problem
and will not be considered here. ) Then the time
development of the ensemble-averaged electron
distribution function

E(v, t) = (f(r, v, t))

is given by a Fokker-Planck equation' '

DE(v, t) B BE(r, t)
Dt BV~ BV fj

where D/Dt represents the time derivative along
the zeroth-order trajectory of an electron. If
there are no fluctuating magnetic fields, 4

D„„=(e'/m') (5E„(r,t)f „5E„(r',t ')dt '),

where 5E~ is the nth component of the fluctuating
electric field and the I; integration is over a ze-
roth-order trajectory [r'= r(t'), v' = v(t')].

We consider only electrostatic waves so that

5E(r, t) =-Vcp(r, t), (3)

and we work in terms of the Fourier transform
of the potential-potential correlation function,

S(k, (u) = fd'( fd7 exp[-i(k ]-(ov)]R(g, T), (4)

where

R(&, 7) —= (y(r, t)y(r+ g, t +T)).

Then

D„„=[e'/(2v)'m'] fd'k fd&u k„k„S(k,ar)

t
x „dt'exp(i[k (r'-r)-u(t'-t)]}.

For a plasma in which there are uniform elec-
tric magnetic fields E, and B„

D B B e /- vxSI B—=—+v' ———
~
Eo+Dt Bt Br m( ' c j Bv

We now assume a steady-state situation in which
the force exerted on the electrons by E, is bal-
anced by the "friction" force due to particle scat-
tering by waves. Then from Eq. (1),

eno eno
( )

3 BE(v)
m ' mc

where vo =no 'fd'v vE(v) =vcr, is the electron
drift. Then, by analogy with magnetohydrody-
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namics, we define a scalar resistivity

VOX BoEo+ ='g+J= -'Q noev()

so that

q* = (I/e'n, 'v, )Jd'u D, „aF(v)/ag„.
We can relate this to an expression which occurs in the solution of the linear Vlasov equation. The

linear dispersion relation for electrostatic waves in a Vlasov plasma is

1++,K&(k, v) =0,

where the sum is over species and, by means of integration over zeroth-order orbits, '

K,.(k, u&) = -(i&@,'/n, k').fd'v k (sf,~'~/Sv) f „dt' exp(i[k (r'-r)-&u(t'-t)]]. , (12)

where &u,.'=4~n, e, '/mj. Th. en, via Eqs. (6) and (10) and Eq. (B2) of Ref. 4, there is, to lowest order,
4

,f», d'k k, k'fd~ S(k, u&) 1m[K,(k, +)] .
mn g v,' ~&~0

This is the main result of this Letter, Its main limitation is that it is valid only for time scales short
compared to the change in I'. However, let us assume the following picture of the plasma: The flow

of energy from Eo into the drift velocity, then to the enhanced fluctuations, and finally to the heating
of the electrons proceeds at a constant rate. In this case, the time rate of change of (j') should be of
the order of the rate of change of the macroscopic parameters, such as temperature. This is suffi-
ciently long to give a meaningful result for g . We now discuss applications of Eq. (13).

Sagdeeu effective collision frequency. —We consider turbulence which develops from ion acoustic
waves made unstable by an electron drift, vo, relative to the ions. ' We assume T,» T, and ~/k &uo«e„the electron thermal velocity. Our first approximation is

S(k, &u) = S(k) 5(&u —&u„(k)), (14)

where S(0) =1 and $(8) decreases to zero as 8, the azimuthal angle measured from v„goes to g, the
half-angle of the cone of turbulence.

We now further specialize to the case in which E, and v, are parallel to B,. For k ~~/k, ~ 2Q,/e, (0,
=eB,/mc), the linear dispersion relation reduces to the B,=0 result, and for Maxwellian electrons.

2k',

where k, '=4vn, e'/T, . The above three equations
in Eq. (13) yield rivation of S(k). The dominant mechanism for de-

termining it has been proposed to be nonlinear
ion Landau damping, ' nonlinear electron Landau
damping, "and wave-wave coupling. " Since
there is now experimental evidence' that the
Kadomtsev spectrum, as calculated via nonlineare„-=2m d8 sin8 cos"8 I 8 .n ion Landau damping, exhibits the correct wave
number behavior, we use this with the normaliza. -
tion due to Paul, Daughney, and Holmes":

(17)

where

(18)

Here 8, is an approximate measure of the solid
angle subtended by the turbulence, and if p «1,
e,=e,.

At present, there is no generally accepted de- (2&)'~v T, T,' ln(k, /k)
7g' v, T; 4ne' k'
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where ~„(k)is the real part of the complex frequency which satisfies the linear dispersion relation,
Eq. (11). The width of the frequency part of the spectrum, b, m, may be neglected if b,&u/k«v„since
(as experimental results show') A~/kS c,=(T,/m, )'", this is valid for ion acoustic turbulence. Exper-
imental results' also show that the turbulence is anisotropic and strongest in the direction of the drift
velocity. To represent this kind of behavior, we assume that

S(k) = S(k) S(8), (15)



Thus' fox' 5'0» &~q

r)*= (4v/(u, ')(9,/28& 2v'"g')v, k, T,/T ( . (20)

Experimental results' suggest g-1 rad, so 9,/
28W2m'"p'-10 ' and, defining an effective colli-
sion frequency v*=-~,'q*/4m, we have

v+/(u, = 10 '(v, /c, )(T,/T;), (21)

the well-known heuristic result of Sagdeev. "
This v* can be substantially larger than the elec-
tron-ion collision frequency and therefore seems
likely to explain anomalous electron heating ob-
served in experiments. '

Perpendicular shocks -T.here is evidence that
turbulence associated with plasma shock waves
propagating perpendicular to an applied magnetic
field has pxoperties which are independent of Bo.
In particular, the Culham group has shown' that
the phase velocity of the turbulence is consistent
with c, Rnd scales as (d&, not as 0,. In addition,
the wave-number spectrum appears to have the
Kadomtsev k dependence [Eq. (19)] for k s k,.
Moreover, the Sagdeev effective collision fre-
quency hRS px'ovlded order-of-magnitude Rgl ee-
rnent with the electron heating observed by Paul
and co-workers' and by Dippel, Hothker, and
Hintz. "

A full explanation of why the turbulence seems
so Bo lndepeQdent must awRlt R complete nonllQe-
ar theory which includes magnetic field effects.
At present, however, we propose the following
plausibility argument as to why the Sagdeev v*
may be valid for the perpendicular shock when
T~» T g.

Consider R model 1Q which the turbulence 18
driven by an ExB electron drift and the ions are
not magnetized. In this case, for the para. meters
of the Culham experiment, the linear dispersion
relation reduces to the usual expression for ze-
ro magnetic fieM, excepting a Small raQge of
angles about the direction perpendicular to Bo."

Although the growth rates in the perpendicular
direction are substantially larger than those off
the perpendicular, the inclusion of V'8 effects"
tends to reduce the former. And nonlinear pro-
cesses should act to distribute the wave energy
randomly among the available modes of propaga-
tion, that is, away from the perpendicular direc-
tion. So we do not expect that S(k) for k&BO will
be substantially larger than 8(k) for the off-per-
pendicular directions.

On the other hand, Gary and Biskamp'6 have
predicted that for the Culham shock the turbu-
lence should propagate at large angles (-1 rad)
to the perpendicular. Although this prediction
has not yet been tested experimentally, we mill

assume it is correct. Then it is clear that the
principal contx'ibution to the k integration in Eq.
(17) comes from off-perpendicular directions,
for which K,(k, u&) is given by Eq. (16). In addi-
tion, the off-perpendicular waves should like-
wise dominate S(k), so that the Kadomtsev spec-
trum, Eq. (19), should be valid. Thus evaluation
of q~ proceeds as above, and the Sagdeev xesult
obtains. As shown in Ref. 15, the V'B contribu-
tions to K, are negligible in the off-perpendicu-
lar, P,«1 case.

The v~ can be expressed in terms of the elec-
trostatic energy density of the turbulence, W
= (E- E)/8~. Defining an average wave number
0 by

g/k = —'9, (2v) 'Jdk k'8(k), (22)

Eq. (1V) implies that

—"=(2v)'"(cos'8) ~
1
', (23)

where (cos'8) =-9,/90 is the average of cos'8
over the 8 dependence of the turbulence. Thus
we hRve Rn approximate expx'esslon for v+ lQ R

T,»T& perpendicular shock, expressed in terms
of four experimentally observable quantities. In
the Culham shock, if Ref. 16 is correct, (cos'{))- ~, so in ordex to obtain the experimental re-
sult v~- 2w;,

W/n, T,- —,'(k/k, )(~,/m, )'". (24)
These considerations do not necessarily apply

for shocks with T,™T;(e.g., the Garching exper-
iments of Keilhacker and Steuer, Ref. 2). Be-
cause 1OQ Landau damping 18 8tx'ong the UQ8table
waves (first discussed by I ashmore-Davies")
are confined to a relatively narrow range of an-
gles about the perpendicular to 8,." If thi. s range
is so narrow that only the A

II
=0 part of E, is im-

portant in Eq. (13), the VB drift must be consid-
ered and Eq. (7) of Ref. 15 must be used for K, .
In this case it is likely that v will depend on Bo.

However, if nonlinear effects are sufficiently
strong to broaden S(k) beyond about 3' to the per-
pendicular, the calculation of v* may proceed as
above, slQce E 18 not Rffected by the 1Qcx'eased
ion damping. Thus, for T,-T„if the angle of
turbulence is sufficiently wide, we can expect a
result like Eq. (23), in which v* is independent
of the magnetic field.
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number of independent degrees of freedom. All
comparisons were made in the absence of signifi-
cant time-differencing errors. ' The advantages
of the Galerkin approximations are enhanced
when compared with the more commonly em-
ployed second-order finite-difference approxima-
tions. Also, if very accurate (or moderately ac-
curate long-time) simulations are required, the
Galerkin approximations offer the advantage of
giving infinite-order approximations [cf. Sect.
(1)j to infinitely differentiable flows.

In this Letter, we describe infinite-order ac-
curate and efficiently implementable Galerkin ap-
proximations to flows within slabs with rigid
boundary conditions. We remark on the exten-
sion to flows in cylindrical and spherical geome-
tries below. Instead of expanding in series of
trigonometric or Chandrasekhar-Reid functions'
(that exhibit Gibbs's phenomenon in some veloci-
ty derivative at rigid boundaries), we expand the
flows in Chebyshev polynomials.

(1) Some properties of expansions in orthogo
nal polynomials. Consider a —function v(x) having
derivatives of all orders for ~x ~

& 1 and one-sided

This Letter introduces infinite-order accurate and efficiently implementable Galerkin
(spectral} approximations to time-dependent incompressible flows within slabs, spheres,
and cylinders with either rigid no-slip or free-slip boundaries. The unusual choice of
Chebyshev polynomials as Galerkin expansion functions is crucial for the efficiency of
the method.

Numerical simulation of time-dependent incom-
pressible flows in slab, spherical, and cylindri-
cal geometries is of much current interest in
fluid dynamics. Applications include studies of
nonlinear effects in rotating fluids, nonlinear in-
stability, and turbulence. For flows in slabs
with either periodic or free-slip boundary condi-
tions, it has recently been shown' 4 that Galerkin
(spectral) approximations obtained using expan-
sions in Fourier series permit substantial eco-
nomies in both computer time and storage neces-
sary to achieve reasonable standards of accura-
cy. It has been demonstrated3 that, in n space
dimensions, fourth-order finite-difference ap-
proximations [i.e., schemes for which the error
due to using a discrete space variable is O(dx ),
where ~ is the grid scale] require at least 2"

times as many degrees of freedom to achieve
reasonable accuracy as Galerkin (Fourier) ap-
proximations; on the other hand, recent improve-
ments2'4 in the transform methods used to imple-
ment the Galerkin equations have made computa-
tion times per time step comparable to that of
finite-difference simulations involving the same
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