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point in the matrix element in (10) by x and subsequently change x into -x, the expression (10) becomes

if-v(p, —p)&CP(b)I{j(0), g(x)) IO)8(xo)(-ya+m)u(q, a-)e""dx. (ll)
The expression (11) differs from the last expression in (5) only in 8(x,) being replaced by -8(-x,) in
the latter. Therefore, if the continuation (5) satisfies the usual analyticity, the difference between
these two expressions vanishes as long as q, is real, which is assumed throughout the above proof,
and also q'+m'=0 where the absorptive part of (5) vanishes. We thus see that the vertex in question
satisfies (4) in the sense of (5).

Finally, we remark that the first equality implied in (5) can be put in the form

v(p, x)&b I j(0)lq, p) =[&q, pI j(0)IP(b)&v(p, &)]*, (12)

where the matrix elements stand for their respective continuations with respect to the baryons in the
sense of (5). We make use of (9) to derive (12). In contrast to (4), the equality (12) holds only in the
unphysical region where the aforementioned decay into the pair of baryons is forbidden kinematically.
The significance of (12) becomes clear if we recall that the absorptive part of the forward baryon-anti-
baryon scattering amplitude in the unphysical region contains the product of the matrix elements that
appear in (12). In other words, (12) implies that the sign of the contribution from a boson to the above
absorptive part is opposite to the parity of this boson. Thus, the contributions from the pseudoscalar
and vector mesons have the sign of the absorptive part in the physical region, whereas the scalar me-
son makes a contribution of the opposite sign.

*Work supported by the U. S. Atomic Energy Commission.
See, for example, A. Barbaro-Galtieri et a/. , Rev. Mod. Phys. 42, 87 (1970).
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The low-energy behavior of the pion-mass form factors is derived using stress-ten-
sor-current commutation relations. The results indicate significant deviations from
tensor-meson and scalar-meson pole dominance of the stress tensor. The stress-ten-
sor-e-meson coupling and the scale dimension of the pion field are obtained in terms of
gz&«. Numerical estimates are given.

The matter distribution within a particle may be characterized by its mass form factors, which we
define in terms of the matrix element of the stress tensor 8 ' between single-particle states. ' In this
note, we derive the pion-mass form factors at low energies, and the pion field dimension, by solving
the Ward identities for the 0"'yy and 0 '8 "y vertices, where y is the pion field and 8 the axial-vec-
tor current.

We define the mass form factors of a 0 meson as follows':

&p, I
8"'(0) Ip,) = —,'[k k G, +(q'g '-q"q')G, +2p, 'i)"'G, +(q"k +k "q')G~],

Pxog + 2 +2gxog eoxGG + ~xoG

where q = p,-p„k =p, +p„p is the meson mass, and

g~o &(kxko & k2gka). Sxo (
xo k 0/ 2), +ho 1 2( PP 4 P ~/ 2)

W '=[q k'+k "q'-~2(q k)S ']/2.

(2)

For an on-mass-shell meson, G, = G, =O and gr(0) = gs(0) = G,(0) =1. We term g and g the scalar
and tensor mass form factors. We use the model-independent equal-time commutator (ETC) reiatjon
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of 0 ' with 8" and ~„8"derived by Jackiw, ' and the divergence relations ~&6I =0 End ~„8,"=C,y„,
where Q ls the pion field.

We define the noncovariant three-point function I' by

E =-(4'-p, ')(p'-p, ') fdzdxexpli(q z-p~'x)](OITl8 '(z)y„(x)P, (0)]10), (3)

and the function E"' ' by replacing y, + in (3) by 8 ". We construct the corresponding covariant func-
tions I and I""' ', using the methods of Gross and Jackiw. ' We identify I with the covariant rna-
trix element (v'(p, ) I8"'(0) lm'(p, )); this defines the mass form factors g~ and gr.

Using the ETC [8 ', 8"] and

[e '(x), y,(y)]6(x,-y,) =F2 o(x)5(x-y),

where o(x) is a scalar-isoscalar operator, we obtain the Ward identities

q~E"=pi'(p; —
I ')+p;(p, ' ~');

iq.E""=-C.(-q p. +q.pi.-I '(p'p'+p 'p p.)];

ip, „E"'"=C,E"+C,(p.'-p, ')+is 2ae "(q)(p,'-p, ')(p, '- p').

(6a)

Here, 46 is the two-point function involving 8 ' and cr.

We solve these for E '
up to the fourth order in q, p„p„and for E"' ' to the third order in the mo-

menta, in terms of two constants. We express one of these in terms of g~, ,„by relating I'"' ' to the
A, ev vertex, and obtain the following low-momentum solutions for g~ and Br, in terms of one param-
eter

8 (q p p ) —Q (q p p ) —1+Qq y ~ o ~

2 p, 'g ~(q', p,', p, ') = 4 p'-p, '-p, '+q'(I-So) + 3(q')'(r-o /m, ')-q'(p, '+p, ')(h + Sr-Sn/p'),

where we have taken

xP( ) iP( z xP qxqP)/(m 2 q2)

(6a)

(6b)

fw=Cwlp ~
o'=~2I & me fw ~

&—= 2~~g~, ew@fwme m~x ~

'|IIII'e have assumed that only one low-lying scalar meson, the e at about 700 MeV, couples strongly to
&+&. The solution (6) leads to the following results:

(a) For pions with zero external mass, the scalar mass form factor has the low-energy form

g ~(q', 0, 0) = 2+ q'(1-Sn)/2 p'+ (q')'(1- n)/2 p,'m, '+ ~

=2+ q'/2p'+ (q')'/2 p, 'm '+ ~ ~ ~

where we have estimated n (or P) as discussed in (c) below.
The result (7) shows that at least for p' = 0 pions, the scalar mass form factor is quite different

from the pion-charge form factor. The rms scalar mass radius is much larger than the charge radius
r,h'(v) =6/m z', and seems to be determined by the pion Compton wavelength rather than by scalar-me-
son intermediate states. (7) suggests that it is inconsistent to assume a simple unsubtracted, pole-
dominant form for 8~ at small q'.

Recently, Kleinert and Weisz' have obtained I"(0, 0, 0) =1-p'd/m, ', where I is the (noncovariant)
function obtained by replacing 8 ' in I' ' by 8,', and d is the scale dimension of the pion fieM cp. Note
that their work refers to the noncovariant function involving (0 I T(8, yq) IO) and hence involves d,
which occurs in the singular term in the ETC [8"',y]. In our results for the covariant E"', this sin-
gular term drops out. With the assumptions made here and in Ref. 6, 2 p, 'g ~'(0, 0, 0) = I"(0, 0, 0), and

d = Sv 2P/f„which is equivalent to the relation noted in Ref. 6.
(b) For physical pions, we obtain the following sum rule for the scalar and tensor (rms) mass radii:
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where g s' —= & g s/eq' and

etc. (8) shows that it is inconsistent to assume pole dominance (by the e and f poles) for both ma, ss
form factors, Bs and Bz,.

(c) To determine the remaining parameter b in gs and gr, we assume maximal smoothness of gs
(which has an e-meson pole) in q', p, ', and p, ', in the sense that Bs is well approximated by (q'-m, ')
x(a+bq'+cp, '+cp, ') for 0( q'( m, ', 0(p, ', and p, s p, ', correct to terms of the second order in q',

p,2, and p2'. This determines k and p, and d=3v 2p/f„giving

p=~&f.mA /6) Ag& t@='g(rT ) mA /me ) AgA ~ d hmf. mA /~AgA tw ~

The sum rule (8) now gives ~(rs')'= (1/2 p.'-I/m, '-2 h). Note that P and d in (9) do not involve the e

mass explicitly.
To obtain numerical estimates, we need A. ~ and g~ „.We assume A~=g =f m, using the Weinberg

sum rules and the Kawarabayashi-Suzuki-Fayyazuddin-Riazuddin result. ' For g„„,we first note

that (9) and the experimental limit I'(A, -cm) (I'(A, -3w) =95m 35 MeV give d)-0.6. In a model with

chiral SU(2) S SU(2) sum rules saturated by 0' and 1' mesons, Gilman and Harari' have obtained

(g„«i(=m„ /f, . In this model, we obtain the estimates

P= ,'f =—'„d=—v2, h=&(rr )2=v 2m, '=v 2m~ ', —,'(r s")'=0.4/p, . (10)

g&„,, +(m&/mf )'gi.„„tan8z, =f,m„'g&, „/X„W2,

where ()r is the f-f' mixing angle. If the f'A, 7T coupling is small, this gives gz„, =f,m„'g&„/A. „v 2.
%e have also solved for the three-point function with 8", 8", and 0~'. This involves additional pa-

rameters and does not give further restrictions on gs and gr.
The extension of this work to the 0 octet and other details will be discussed elsewhere.

The estimates (10) are characterized by a large scalar mass radius for the pion, and a tensor mass
radius of the same order as the pion charge radius. The validity of the results (9) depends mainly on

the smoothness assumption for gs, while the numerical estimates (10) depend, in addition, on the Gil-
man-Harari model being a good approximation. The results indicate that tensor-meson and scalar-
meson pole dominance of the matrix elements of the traceless part and the trace, respectively, of the
stress tensor are not adequate approximations.

We note that taking d"-1 in (9) would correspond to a universality limit in which Br is (approximate-
ly) degenerate with the pion-charge form factor, with —6(rr')'=m, '=m~ ', as may be obtained if both
are dominated by a universal, exchange-degenerate p-f, trajectory. This would require )j.~=m„'/
g„„.Assuming A„=A~ =f~m~, this would imply g„„=g~„m„2/m~2 and I (A, -ev)»-110 MeV. An

experimental estimate of either g„,« o g~, z„will enable a direct estimate of d and of the deviation
from the universality limit.

(d) We have found that simple resonance-dominated unitarization schemes (with finite width) are
quite inadequate, at least for gs. Possible mechanisms for a large Bs (0) would be (1) very large in-
elasticity in high-energy, S-wave ~w scattering, (2) a zero in gs(t) for Ret small and negative, and

(3) an S-wave nv bound state. In the absence of evidence for a 2m bound state, the most reasonable
mechanism seems to be a zero in gs(t) for Ret -0. This could arise from a zero in the vv S-wave
amplitude A, '(t) for Ret( 0.' An interesting consequence would be the following. A zero for t real and

negative would imply a zero in the appropriate (physical) amplitude for pion scattering by a gravita-
tional field, while a pair of complex conjugate zeros, with Ret -0, would give a dip in the amplitude.
Unitarization schemes and Veneziano-type models for gs, gr, and F ' ' will be discussed in a sepa-
rate paper.

(e) The solution for E+ ' gives the result that in the decays f-A, + v and f'-A, + &, the E wave is
suppressed compared to the D wave. Approximating the parts of E and I "' traceless in ~ and 0 by
a constant plus an f pole plus an f' pole, "we obtain the sum rule

See, for example, H. Pagels, Phys. Hev. 144, 1250 (1966).
We normalize states covariantly: (p'ip) = (2~) 2po6(p-p'). q is the metric (1,-1,-1,-1).
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Results are presented for the production of electron pairs by the collision of high-
energy bremsstrahlung and high-intensity laser beams. With Stanford linear accelera-
tor bremsstrahlung parameters, it is found that the laser must be focused to about 10
W/cm to produce pairs. Approximately 25 laser photons participate in each event,
and the required laser intensity is outside the known radius of convergence of perturba-
tion theory for this process. The electron mass shiR may also be determined.

The physical process investigated here is one
in which electron pairs are produced in the col-
lision of two photon beams. One beam is taken
to be as energetic as possible and the other to
be as intense as possible —i.e., we consider the
collision of a bremsstrahlung beam from the
Stanford Linear Accelerator Center (SLAC) ac-
celerator with a focused beam from a pulsed
laser. " This process is particularly interesting
for a number of reasons. One reason is that it
represents the generation of massive particles
from an initial state with no mass whatever. An

experimental demonstration of the creation of
matter would have considerable philosophical
significance. ~ Although the crossed-channel
processes of Compton scattering and pair annihi-
lation have Iong been familiar in the laboratory,
photon-photon pair creation has never been ob-
served. Another interesting aspect of the pro-
cess lies in the very high order of the interac-
tion. We show below that energy conservation
requires that about 25 laser photons contribute
to the production of each electron pair. The fact
that pair production can actually occur with such
a high-order interaction is a consequence of the
inherently nonperturbative nature of a process
which takes place at such a high intensity of the

laser field. %'e show that the required intensity
is well beyond the upper limit of validity of per-
turbation theory. All the above features would
be demonstrated by a simple observation of the
photon-photon production of pairs. If the momen-
tum spectrum of the pairs was also observed,
then it would be possible to measure the contro-
versial intense-field mass shift of the electron. 4

We denote by ~ the energy of a single laser
photon, and ~ is the energy of a bremsstrahlung
photon. (We set h = c = 1.) If the photon beams
are collinear, then the product cocV is invariant
under I,orentz transformations along the beam
direction. The energy threshold for pair produc-
tion may be specified' in terms of co+ as

N(u(u ) m'(1+z).

N is the number of laser photons that participate,
m is the electron mass, and z is the intensity
parameter of the laser field. The parameter z
can be written as e'a'/2m' (where a is the am-
plitude of the vector potential of the laser field),
or as 2p&&cr, (where p is the density of laser
photons, X the laser wavelength, Xc the electron
Compton wavelength 1/m, and r, the classical
electron radius e2/4wm). The appearance of
m'z on the right-hand side of Eq. (1) in addition
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