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Uniformly rotating configurations in general relativity are considered, and a condition

is obtained that they can be quasistatically deformed without violating any of the require-
ments for equilibrium. This condition extends, into the domain of the rotating stars, the

criterion for the onset of dynamical instability (via a neutral mode of oscillation) that oc-
curs by radial pulsations in nonrotating stars.

It is now well known that in general relativity
spherically symmetric configurations that are
stable in the Newtonian theory can become dy-
namically unstable by a radial mode of oscilla-
tion if their radii are less than some determinate
values. ' It is this general relativistic instabili-
ty that is responsible, for example, for the ex-
istence of a lower limit to the periods of pulsa-
tions of white dwarfs and for their exclusion as
an interpretation of pulsars. ' '

It is also known' "that in the Newtonian theo-
ry, rotation has a stabilizing effect on the spher-
ically symmetric mode of dynamical instability
in the absence of rotation. If the destabilizing ef-
fect of general relativity and the Newtonian sta-
bilizing effect of rotation are considered, each
in their lowest orders —O(c ) in general relativi-
ty and O(Q') in rotation (c is the velocity of light
and 0 is the angular velocity of rotation, as-
sumed uniform) —then it is a simple matter to
write down the result of their combined effects
on stability. " But so far the problem has not
been investigated in the exact framework of gen-
eral relativity, and the problem is clearly im-
portant in the broader context of the collapse of
rotating stars.

In this Letter we shall show how, by consider-
ing infinitesimal quasistatic deformations of uni-
formly rotating configurations, we can obtain a
sufficient condition for the onset of instability in
the exact framework of general relativity.

The description of the stationary state. —The
equations governing the equilibrium of uniformly
rotating axisymmetric configurations have re-
cently been written down by several authors. " "
The form of the metric, which involves no loss
of generality and which is convenient for our
present purposes, is

ds' = -e"dt'+2 e (dP-~dt)

+ e'"(de'+ dZ'),

where p is the azimuthal angle about the axis of

symmetry Z; 2 is the horizontal coordinate dis-
tance from the Z axis; and v, p, , P, and &u are
four potentials that depend only on P and Z.
(Units are used in which the velocity of light c
and the constant of gravitation G are set equal to
1.) The field equations derived from the forego-
ing metric and appropriate for a perfect fluid de-
scribed in terms of the energy-momentum ten-
sor

T"= (e +p)u'u'+pg" (2)

have been written down by Bardeen. ' In Eq. (2)
e is the energy density, p is the pressure, g" is
the metric, and u' is the four-velocity.

We shall be concerned here with quasistatic de-
formations of stationary uniformly rotating con-
figurations described in terms of Eqs. (1) and (2)
in order to ascertain when such deformations can
be effected without violating any of the require-
ments for equilibrium. These conditions will be
the same for the onset of instability via a neutral
mode of oscillation. "

The description of the method. —To consider
quasistatic deformations about equilibrium, it is
convenient to have equations that formally govern
time-dependent departures of the various quanti-
ties from their equilibrium values. For this pur-
pose, we shall consider the field equations de-
rived from a metric of exactly the same form as
(1) but with the potentials v, tt, P, and &u and the
thermodynamic variables e and p allowed to be
functions of time as well. This choice of the
time dependence is not the most general that is
compatible with the basic requirement only of
continued axisymmetry. But its consideration
will enable us to pass conveniently to the limit of
infinitely slow variations and quasistatic defor-
mations of the equilibrium solutions [derived
from Eqs. (I.) and (2)] without time dependence.
The procedure outlined is justified since the qua-
sistatic deformation which we wish to consider
is one which will carry one equilibrium configu-
ration into another described by the same form
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for the metric.
Therefore, while we shall formally consider

the field equations derived from a time-depen-
dent metric of the form (1), it is to be clearly
understood that our present interest in them is
only in the limit of infinitely slow variations.

The generalization of Bardeen's equations,
which follow from Eqs. (1) and (2) when e, p, v,
i1, p, and u& are allowed to be functions of time
as well, can be readily written down; and the
equation governing the fluid motions may be tak-
en to be

u u~. ~
= -(p ~+u~u p ~)/(e+p). (3)

[N(-g)"u'], = 0 (4)

In Eq. (3) (and in the sequel) Latin indices run
from 0 to 3 (with 0 and 1 referring to f and y,
respectively) and Greek indices take only the val-
ues 2 and 3 (corresponding to 2 and Z). Summa-
tion over the respective ranges of repeated indic-
es is to be understood; also commas will be used
to indicate ordinary partial differentiation with
respect to the coordinate specified, while semi-
colons will be used to indicate corresponding co-
variant differentiation.

Equation (3) must be considered together with

the equations

u'[u, (e +p)/N], . = 0 (5)

that ensure the conservation of the baryon num-
ber N and of the angular momentum (per baryon).
In Eq. (5) u, is the covariant component of the
four-velocity in the y direction.

The vacational equations. —Starting then from
an initial configuration that is stationary and is
uniformly rotating with an angular velocity
(=dy/dt), we can readily write down the equa-
tions that govern deformations preserving the
axisymmetry of the configuration by linearizing
the time-dependent field equations as well as
Eqs. (3), (4), and (5).

We shall describe the motions that will ensue
in the 2 and the Z directions by a Lagrangian dis-
placement of the form

$ (m, Z)e'",
where 0 is a characteristic-value parameter to
be determined. (Our principal interest is in the
conditions for the existence of nontrivial proper
solution $ belonging to a null characteristic val-
ue. ) We shall also let b,Q and 5Q denote the La-
grangian and the Eulerian changes, respectively,
in any quantity Q caused by the displacement $ .

The linearized version of the baryon conserva-
tion equation (4) is

~Ã v5v Q 1/2
1-v' +&(&—P-2u)- i [u (-g) 4 1u0( g)1 2 I

where

v =me '"(&-( ) and u'=e "(1-v') ' '.

From the vanishing of the covariant divergence of T" it follows that

he = (e+p)bN/N and &p =yp&N/N,

(8)

where y is an appropriate thermodynamically defined "adiabatic exponent. " Making use of the forego-
ing relations, we find that the linearization of Eq. (5) gives

5v yp b,N -~(P-~)-5 (»u, ), ,v(1-v') s+p N

where

u =Re 'v(1-v') '~2.
1

The corresponding Lagrangian change in 0 follows from Eqs. (8) and (10). We find

b, (Q-(u) = (0 ~)[5(P 2v-) 6v/v ] g-(u--

(10)

(12)

And finally the linearized version of the equation of motion, Eq. (5), is

-o-'(e+p)(u')'e'"( —g)' '("= ( g)' 'u'(yphN/u'N— )—~+ (e p+)(- )'g'(bu'/u')

+ (e p)+( —g)'~'(aN/N)(lnu') -(e+p)u'u„(-g)'~2(bQ) „. (13)
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Besides Eqs. (7), (9), (10), (12), and (13), we also have the linearized versions of the field equations
to determine the Eulerian changes 5v, 5p, 5p, and 5&v in the potentials in terms of 5p, 5e, and 5v giv-
en by Eqs. (7), (9), and (10). We find, in particular, that the (1,n) and the (0, n) components of the
linearized field equations admit immediate integration and give

16m, (Q-ro)e'" $"= 5u „+(35P-45v)&uI-v'

«(&+P)/(I-&')(-g)' '( = —(rue 5q) +((ue ) 5g-me 5p +2(oe85gv „,
where

While the relations (14) and (15) have been deduced from the (1,o) and the (0, o) components of the
field equations (which vanish identically in the time-independent case), one should, in principle, be
able to deduce them from the linearized versions of the time-independenf equations. Thus, once hav-
ing the relations (14) and (15), it is easy to verify that they satisfy the linearized versions of the time-
independent equations

R ' =8mT ' and R + —R =8mT

if appropriate use is made of the conservation equations (7) and (10).
Returning to Eq. (13), we now observe that this equation, together with the usual boundary conditions

on 5P, 5e, and the Eulerian changes in the other field variables, provides a characteristic-value prob-
lem for e'. It can now be shown by a somewhat lengthy analysis [in which the relations (14) and (15)
play essential roles] that the characteristic-value problem is self-adjoint and that the following ex-
pression provides a variational base for determining o':

-cr' J[(e+p)(u')'e'"g!'-e '"(5g'+25', 5g)/4m](-g}'~'d'x

= J 4-(-g)'"~0[1+&0~'/(e+P)](&&l&)'-(-g)'"0 0,.('[»(&+0)], +(-g)'"(( 0,.)'/(~+0)

+2( [P,.-~u(-g)" '(in, ),.]»/&-(e+P) '(-g)'"[( (in, ),.]'
-18(&+0)'(-g)'"e'"!(I'~'/(I-&')-2(-g)'"(~0«0/(I-&')+4( g)'"(&+P}-s'&,5nh ~,
-(-g)'i'[(e +p)(l-v')5q'+ 4(e-p)5p 5q+ 25ehg-4php, ']

+ (&ue /4n)[5g 5q „-25q5p „-m'e' '"(v }25rP])d'x.

Having obtained Eq. (18), we return to our main
objective of finding a condition for the onset of in-
stability via a neutral mode of oscillation, i.e. ,
for the occurrence of a neutral state that is mar-
ginally stable, For such marginally stable states
0 =0 and the required condition is obtained by set-
ting the right-hand side of Eq. (18) equal to zero.
In particular, the vanishing of the right-hand side
of Eq. (18) for some chosen trial functions (that
satisfy the boundary conditions of the problem
and in case the integxal on the left-hand side is
positive-definite) will provide a sufficient condi-
tion for the onset of instability.

In the case of slow rotation, the right-hand
side of Eq. (18) can be reduced, as in the Newto-
nian theory, to give an explicit formula for the
change in the criterion for stability due to rota-
tion, that will requix e only quadx'atures over the

altered distribution [to 0(&')] of the various quan-
tities in the stationary configuration and the prop-
er solutions belonging to the radial modes of os-
cillation of the nonrotating spherical configura-
tion. This reduced form of Eq. (18) can be used
to detex'mine the stability of the slowly rotating
models for neutron stars that have been con-
structed by Hartle and Thorne. ""And again, in
a suitably modified form Eq. (18}can also be
used to ascertain the stability of the uniformly
rotating disks that have been constructed by Bar-
deen and %'agoner. "

In conclusion, it should be emphasized once
again that by restricting ourselves to neutral
modes (o =0) we have avoided any reference to
gx avitational x'adiation. Gravitational radiation
will undoubtedly occur when ot 0; in such cases
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one should be careful about the boundary condi-
tions at infinity; but these considerations are be-
yond the scope of this Letter.
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Reaction K~ p ~ KS p from 1.3 to 8.0 GeV/c*
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B. S. Shen, & W. M. Smart, F. C. Winkelmann, and R. J. Yamartino
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Total and differential cross sections are presented for the reaction Klop- Ezop from
1.3 to 8.0 Gev/c as measured in an exposure of the Stanford Linear Accelerator Center
40-in. hydrogen bubble chamber to a neutral beam. The forward points of do(KI op

—Ks p}/dt together with K'n and Z n total cross sections are used to determine the
intercept of the effective Begge trajectory, e (0) =0.47+ 0.09, and the regeneration phase

p&
——-48'+ 8 .

We present experimental result on the reaction

covering the momentum interval from 1.3 to 8.0
GeV/c. Previous investigations of Reaction (1)
have been reported by Firestone et al. ' j.n a hy-
drogen bubble chamber experiment and by Dar-
riulat et a/. ' in a transmission regeneration ex-
periment.

In the t channel, the reaction must proceed
through exchange of neutral mesons having natu-
ral spin and parity and odd charge conjugation.
The only known candidates are the members of
the vector nonet (p, co, and p). As pointed out by
Gilman, ' (d exchange is expected to dominate over
p in the forward direction, and p exchange is ex-
pected to be negligible because of. the experimen-
tally small @Tt& coupling. The s and f. behavior
of the cross section and the phase of the forward
amplitude are therefore powerful tools in under-
standing the properties of ~ exchange. A more
complete analysis of these exchanges is given in

the following Letter. 4

The results presented for Reaction (1) are
based on an analysis of 200000 photographs from
a total exposure of 800000 photographs of K~'p
interactions in the Stanford Linear Accelerator
Center (SLAC) 40-in. hydrogen bubble chamber.
The details of the beam and the K~' momentum
spectrum are given elsewhere. ' We have checked
carefully for possible systematic uncertainties in
our determination of the K~' momentum spectrum
and conclude that they are negligible compared to
the statistical errors of our data sample. The
events were found in a scan of the one-prong-
plus-vee topology, measured on conventional
film plane machines, and reconstructed and fit-
ted with the TVGP-SQUAW computer programs.
The sample consists of 571 events in the momen-
tum interval 1.3 to 8.0 GeV/c of which less than
1/c are kinematically ambiguous with other hypo-
theses. ' Corrections have been applied for scan-
ning meffxcxencI. es due to the K lxfetxme and

steeply dipping protons.
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