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Using hard-meson current algebra with single meson dominance of currents and the
c commutator, it is deduced Chat (a) the 0~ mesons must occur in nonets, and {b) chiral
symmetry is broken by only (3,3*)$(3*,3) terms (whicb then impbes a small $ param-
eter) . Recent caleu1ations which obtain a large negative ( vrith only (3,3 ) terms are
seen to lIQply a violat1on of the cUrrent-algebra constraints, HO%'ever s Qle large exper-
imental g can be obtained by including additional nonpole (1,8) 8 (8,+1 breaking terms

The nRture of the breakdown of chlx'Rl symme-
try has been the subject of much investigetion for
for a number of years. Perhaps the sixnplest
and most elegant hypothesis' is the postulate
that the symmetry-breaking interaction belongs
to a (3, 3*)8 (3*,3} representation of chiral SU(3)
SSU(3}. In the first part of this note it will be
shown that this assumption can actually be de-
duced as R consequence of the usual postulRtes
of hard-meson current algebra when single me-
SQn dominRnce 18 assumed fol both the cul rents
and the v commutatoxs. ' The analysis is non-
perturbative and assumes an arbitrary size for
the SU{3) and chiral breakdown terms. The re-
striction to tbe L3, 3*) form arises from the con-
flict of requiring the lntelRctlon to SRtlsfy 81-
multaneously the current commutation relations
(which are chirally symmetric) and the partial
conservation of axial-vector current (PCAC)
conditions (which insist on chiral breakdown).
Within a fixed dynamics (pole dominance) these
t%'o Rx'6 consistent %'1th only one form of symme-
try breaking. Thus one has the remarkable re-
sult of the fox'm of a symmetry breaking being

deduced from dynamical considerati, ons.
Experimentally, tbe (3, 3*) chiral breakdown

combined with pole dominance appears to be
quite successful in the nonstrange channels, but

not so successful ln the strRnge Ones, Thus the
Weinberg px'ediction' that the gz scattering
lengths obey ao/a' = -3.5 is in good agreement
with the experimental result' a'/a'= -(3.2 +0.1).
However, tbe E» decay $ parameter predicted
is close to zero, '6 while present data now ap-
pear to be favoring' $ ~-0.5. It is thus becom-
ing a pressing question whether or not the (3, 3*)
breakdown can account for the present R» data.
%6 investigate this problem in the second part
of this note, where it is shown that a simple ad-
ditional nonpole term transforming as a (1, 8)
S (8,1) representation can account for a large
negative g without disturbing the previous suc-
cesses of current algebra (e.g. , pion scattering
lengths). Thus current algebra is quite capable
of yielding a large negative g.

(I) We begin by carefully stating tbe bard-me-
son current-Rlgel3ra assumption. These ax'6

(1) the chiral commutation relations

5 (x'-y') [g,'(x), J',~ (y)] = ic~,J',~ (x)5~(x-y) + c-number Schwinger terms,

where g, b, and e run over the vector and axial-
vector indices for the SU(3) SSU(3) algebra. One

may, of coux'se, always use the currents as in-
terpolating fields for the octets or nonets of J
= 1' mesons n,"(x) of mass m, and 0' mesons

s,(x) of mass p, Thus one may write .

J',"(x) =g„v,"(x) + F„3"s,(x)

(For the I=1, axial channel, g„=g~5„, F„
= F',0,» etc.) (2) The PCAC postulate

! Equation (3) tbu»ncludes the partial conserva-
tion of vector current relation for the g meson
channel. In addition we assume (3) saturation of
intermedi3te sums by the single-meson l~ and
0' states, and (4} smoothness, i.e., that meson
vertices can be approximated by a linear func-
tion of tile momentum transfers. Conditions {3)
and (4) imply that the dynamics can be character-
ized by an effective Lagrangian to be used only
in the tree and seagull approximation with v, ' (x)
and s,(x) as canonical variables. ' We stress that
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the use of the Lagrangian has no fundamental
significance and is merely a device for realizing
the conventional hard-meson dynamical assump-
tions (3) and (4). Thus all the results in this note
would follow equally well (though perhaps not as
simply) using any of the other hard-meson for-
malisms (e.g. , Ward's identities, etc.).

We now outline the derivation of the following
result. ' Theorem 1: If in addition to assump-
tions (l)-(4) above, the v commutators are sin-
gle-particle dominated, then the 0' mesons must
occur in nonets (not octets) with experimentally
correct g-parity assignment. Theorem 2: The
conditions of Theorem 1 also imply that chiral
symmetry is broken only by a term which trans-
forms as a (3, 3*)8 (3*,3) representation.

We start by noting that the variables so, (x) ca-
nonically conjugate to s, (x) are obtained from
s„,= B„s,—621/5(8" s,). One may thus eliminate
8's, in Eq. (2) and express J,' in a power series
in the canonical variables s„, s, whose linear
term is just F,'bsb'. On the other hand, the o-
commutator assumption implies that [J', , s„]
must be linear in the spin-zero fields. Thus J,'
can be at most quadratic in the spin-zero fields
and one may write

Ja"—FabSb"+ ZabcS b" Sc (4)

ZadcFbc- Fac Zbdc+ C abcFcd
= 0

[Z., Z,]= -c„,z„
(6a)

(6b)

where Z, is a matrix with elements Z„„and
appropriate matrix multiplication is implied in
Eq. (Gb). The only solution of Eqs. (6) are

Z, =S 'A, S

with S, A, constrained as follows: (1) S is diag-
onal with elements constant in each isotopic mul-
tiplet except for possible 8-9 mixing of the iso-
topic singlet states; (2) S obeys [by Eq. (6a)]

ac Sbc ~ abc bc

b, = 0 for c 4 8, 9; b, = cosa, bg= sino. ,

with 8, 9 referring to the isosinglet natural-par-
ity states, and e an arbitrary "mixing angle. "

where terms containing the (irrelevant) depen-
dence on the vector-meson fields have been omit-
ted. The canonical commutation relations then
imply that the o commutators have the form

~(x'-y') [~.'(x), s, (y)] = «[Z.».s.+ F.»]~'(x-y). (5)

The parts of Eqs. (1) and (4) which depend only
on the spin-zero mesons yield

(3) Either (i) A„,=f„,if a are natural-parity
components, A,b, =d„, if a, b are unnatural par-
ity, and A„,=-d,b, if a, c are unnatural parity
or (ii) A, », =c,»,. However, possibility (ii) [which
would lead to a (1, 8) S (8, 1) chiral breakdown]
may be eliminated as it is inconsistent with
PCAC in that it would lead to conserved axial
currents. Thus by Eq. (7b), (ii) would imply F',
=0, for example. " The remaining case (i) is
actually a solution of Eq. (6b) only if b and c of
Z,b, run over nonets of natural and unnatural
parity states and not just octets. Thus, from
Eq. (4) one sees that the 0' mesons must exist
in nonets. Equations (7) thus imply the existence
of an 18-piet of scalar and pseudoscalar densities
&u, =S„s»+b„whi hcform a (3, 3*)$(3*,3) rep-
resentation:

& (x'-y') [&.'(x), &u»(y) ]= iA.»,~.(x)6'(x-y). (8)

c~ cz +c, -2c„cz-2c,c,-2cxc„ (10)

where tann, =1/v2 and c,=-F,'p, ', etc. ,

We can now see that the above analysis implies
a (3, 3*) symmetry breaking. For in the single-
meson-dominance case, this hypothesis also
requires the existence of an 18-piet of densities
&, linear in the s„ i.e. , 2, = (/Z)„s»+b, obey-
ing the (3, 3*) condition Eq. (8). (Here Z is the
wave-function renormalization matrix of Glashow
and Weinberg. ') The &o, govern the symmetry-
breaking interaction g' according to g' = e, g„
e, ,10. Comparing the (3, 3*) conditions for 2,
with Eq. (5), we see that they imply that Z,
=( Z) 'A, 4Z and F„S„=A„,b, and hence on
comparison with Eqs. (7), S„=(v'Z)„and b, = b
Further, Noether's theorem, when compared
with Eq. (3), yields Fp, '=»,Ae», »S. Using the
relation b, = b, and Eq. (7b), this result allows
one to express e» in terms of n and in addition
imposes one further condition that determines +
to have precisely the value given in Eq. (10).
Thus the current-algebra results Eqs. (7a), (7b),

We next invoke the PCAC condition, Eq. (3).
Inserting Eq. (4) and using the I agrange equa-
tions B„s,"= p. ,'s, -6g,/5s„where 2, =g„,s, s, s,
+ ~ ~ ~ one finds from the spin-zero parts

6+gdgdbc labe ~ b lacb~c '

This relation determines various components of
g,b, but in addition the total symmetry of g„, im-
poses one further constraint on Z„,which by
Eqs. (7) determines the mixing angle n:

«n(n+ n, ) =M2c, [c,-c~+a'~'] ',
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and (10) are isomorphic to the results obtained
from the (3, 3*) symmetry breaking (&,= cu„
etc. ) completing the proof of the theorems.

(II) The above results may be extended by re-
laxing the single -meson-dominance assumption
and assuming that (d, and B„J," are arbitrary
functions of s, . If in addition, however, one
assumes a (3, 3*) symmetry breaking, one may
make a point transformation re-establishing the
pole dominance conditions" (and hence the the-
orems of the previous section) and thus again
giving rise to a small $ parameter. " One is
therefore led to consider the possibility that the
pole part of g' is (3, 3*), but in a.ddition there is
some nonpole (1, 8) pieces. One can indeed eas-
ily construct quadratic (1, 8) pieces X, from the
(3, 3*) ~, according to

Xa ~abc+bc &

where X„,= -d„, for a natural parity, y„,=f„,
for a, b unnatural parity, and x„,= f„, for —a,
c unnatural parity. The simplest model includ-

ing both (3, 3*) and (1, 8) symmetry breaking
would then be characterized by g'= e8Q38+ E'g(L)g

+y,x, . The presence of (1, 8) pieces in g' can be
thought of as natural from another viewpoint.
For, it has been argued' that chiral SU(3) SSU(3)
symmetry breaks by first breaking SU(3) while
preserving SU(2) 8SU(2), followed by a smaller
breakdown of SU(2) I8ISU(2). It is easy to see,
however, that the first level of symmetry break-
down is achieved by the choice e, = v 2 e9 and ar-
bitrary y, . Indeed, the y, term does not con-
tribute to any of the SU(2) SSU(2) analyses, and
all of the successes in this subspace (e.g. , mp

and mX scattering lengths, etc. ) are preserved
for arbitrary y„. Thus there is no a priori rea-
son to set y, to zero, within this framework of
symmetry breaking.

The X, term does, of course, effect the strange
channels, e.g. , the K„decay. The previous
pole-dominance analysis' can easily be extended
to include the quadratic X, contribution to PCAC.
The f+(t) form factor is unchanged, and we quote
here the modified result for $:

$=—-(m ' —m, ')/m .'+G/f, (0),

2F+ m, G =c,-c + F (m, -m )+ E, (m„-m )+ F (m '-m, ')-~&c, /x,

where x—= tang is determined by

2x(x+ W2)cz + 2x(x-v 2 )c,= (x -2)fc + &3ysx'(1-sin g)j.

(12b)

(12c)

The first term of Eq. (12a) contributes about
-0.28 to $. For y, =0, Eq. (12c) reduces to Eq.
(10) with g= o. +n, . The second term then contrib-
utes about +0.18 or +0.29 [depending upon the
solution chosen in Eq. (10)]. Thus $ =-0.10 or
+0.01 for y, = 0. This is the usual (3, 3*) result
which is in bad agreement with the present data.
However, with y, C 0, the additional (1, 8) con-
tribution allows one to have a large negative $.
Thus if we write x=c,/(v2pcz), then Eqs. (12a)
and (12b) yield" $ =- -0.60 for the choice p = 2,
which is to be compared with the present com-
bined R»+ data result f = -0.65 +0.20 of the Chou-
net analysis. " [From f, (t) one has' X, -=0.026
consistent with the present world averages of"
X, =0.034~0.006 from K»' data, A. , =0.017 ~0.008
from K„o data. ] Equation (12c) for x small (i.e.,
p 4:0) now determines y, to be y, = -2p(cz/c, )
x [(1+p)cx—c,]-(cz+c„). One may also determine

e, and eo for this model. One finds e, /e, = -W2

+0(c,/c~p) and e, /y, = -W2+0(c, /c~p). The
above results are all insensitive to the precise
value of F'„. %e see that due to the smallness of

c,/c~=m„'/m»', the theory arranges c,/e, so that

the (3, 3*) part of the symmetry breaking almost
preserves the SU(2) IISU(2) subgroup [as orig-
inally suggested in models without any (1, 8)
breaking'] as long as p is not very smail, i.e. ,
as long as $ is not close to zero. [Similarly,
while e, /y, is not theoretically determined and
depends upon the value of $ (through p), one has
e, /y, = -v 2 independent of the precise value of (
as long as $ is not close to zero. ] Thus ail the
nice features of models with onjy (3, 3+) break-
ing are mazntazned.

(III) In the previous section we have shown that
hard-meson current algebra can account for a
large negative $ pa.rameter provided one includes
some (1, 8) symmetry breaking, and that such
terms do not effect the successes of (3, 3*)
breaking in the nonstrange channels. %e con-
clude with some comments concerning related
work on this question. Dashen and %einstein"
consider an arbitrary symmetry breaking and
yet obtain a small value for $. However, they
also assume that the symmetry breaking can be
treated as a small perturbation. The above anal-
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ysis shows that &, , and y, are not small and so
large corrections are neglected in their work.
Several authors'" have considered the (3, 3*)
breaking case, but have concluded $ can indeed
become large and negative provided e, «e,.
These authors make the a priori reasonable
sounding assumption that the off-shell pion ma-
trix element (xI,J,IK) is essentially constant in
the range O~q '~p, ,', the so-called weak PCAC
or pole dominance of the divergence of the axial-
vector current condition. However, by direct
calculation one may easily show' that this matrix
element has nongentle pieces precisely when ee

«c„ invalidating the argument. (Actually, when

ea is comparable with &9, the matrix element is
gentle, and then, of course $ =0.) This nongen-
tleness is a particular effect of the strange chan-
nel, and arises as a consequence of the current-
algebra conditions. On the other hand, current
algebra requires that all nonstrange matrix ele-
ments are gentle. ~' Thus the theory produces
no violations of gentleness in the nonstrange
channels where the concept has been experimen-
tally vexified, and the nongentle behaviox' in the
strange channels arises naturally (not by ad hoc
assumption). However, this phenomenon points
up the dangers of making an apparently xeason-
able additional noneurrent-algebra assumption,
as the extra condition may actually be inconsis-
tent with the current-algebra postulates already
made.
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