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zinc show no change in ~ (to within the ex-
perimental uncertainty of +0.2 kcal/mole), it
would appear that the combination of relaxation
displacements that places (8bS/8p) r towards the
low end of the calculated range is most probable.
On the other hand, the parameters in Eq. (8) can
be varied over reasonable limits to yield changes
in AII of the order of 3 kcal/mole over typical
dlffuslon temperature I'anges. This 18 large
enough possibly to account for the presumed"
curvature in the Arrhenius plot for self-diffusion
in gold in terms of a monovacancy mechansim
only.

In summary, a model calculation based on a
Morse-like potential indicates that the fx equen-
cies of atomic vibrations in the vicinity of the de-
fect vax'y with pl essQI'e ln a way that 18 con818-
tent with the observed tempeI'ature dependence of
the activation volume for zinc. It is expected
that more refined measurements for other metals
would disclose the same type of behavioI.

The author'8 wish to express their gratitude to
Professor H. B. Huntington for many stimulating
discussions, suggestions, and encouragment
throughout this work.
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D. R. Hamann
Be// Te/ephone Laborafmies, Mm~ay Hi//, Nese Jersey 07974

(Heceived 9 March 1971)

The overlap of the ground states of a many-fermion system in the absence and pres-
ence of a localized potential is recalculated using a method introduced by Bivier and
Simanek. Contrary to their claim, the result previously obtained by other methods is
recovered.

The calculation of the overlap between the
ground states of a fermion gas in the absence
and the presence of a scattering potential is the

simplest example of a class of related problems
which contain infrared divergences, ' Other ex-

amples occur in the problems of x-ra,y absorp-
tion in metals' and of magnetic impurities in
metals. ' ' In a recent Letter' Rivier and Simanek
(RS) claim to have calculated an exact expres-
sion for the overlap which disagrees with that
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given by the methods used in Refs. 1-5. Vfe show
here that their method, in fact, leads to the old
result. Subtle difficulties which arise in calculat-
ing a key limit, not discussed by RS, necessitate
a rather detailed presentation of the calculation.

The method of RS is similar to that of Nozieres
and De Dominicis (ND)' in that both calculate the
fermion Green's function y(t, t') in the presence
of a time-dependent contact (or separable) poten-
tial. RS consider the potential &V6(-t)e"' and
find the Fourier transform relative to the first
argument of p. (ND perform the entire calcula-
tion in the time domain. ) The equation satisfied
by y((u, t') is

p(a), t') =g (&o)e'"'

d(d p((d, t )
27fi (d —(d+ ig'

as t —-~. %e have used perturbation theory on

Eq. (1) to obtain the first-order correction to

y, and find that it does not contribute to Eq. (3).
To find y(q = 0), let us introduce a new infini-

tesimal 5 in Eq. (1) which is arbitrarily small
and is to be distinguished from g. %e introduce
a function 4 which has a real-axis branch cut
and is analytic elsewhere. The real-axis values
are

4'((u) = (2mi) 'f dx(x-(u+N) 'y(x, t').

This allows us to express y as

and Eq. (1) as

y =ge'"'-~Vga,

where the unwritten arguments are understood
to be ~.' Another function with similar analytic
properties must be constructed to satisfy

which is equivalent to Eq. (8) of RS. The local
free-fermion Green's function g is given by

g(CO) = J dip(E)('(d —'E —i5 sgI16') (2)

where p is the density of states. The overlap is
given by

X'/X = 1-A Vg,

and a suitable function is

,
( ) (

.), ) in[1-A. Vg(x)]
g-co +$5

(7)

(8)

(S)=exp[ 1, dA -Vf dte"'p(t, t')]. (3) Eqs. (5)-(7) may be combined algebraically to
yield

The limit g-0 is to be taken to satisfy the re-
quirement that the potential be turned on adiaba-
tically. Equation (1) can be solved exactly in
this limit, so the g=0 limit of p is well defined.
To determine whether Eq. (3) is well defined,
we must examine how y(t, t') behaves in the
limit t —-~. From related studies, 4 we expect
cp(ran=0) to approach a constant equal to the Green's
function in a constant potential ~V. This contri-
bution to the t integral leads to a divergence as
q-0, but it is purely imaginary and does not
affect l(S)l. We also expect a transient term in

p which decays away from the step change in
the potential at t = 0 and presumably is integrable
Finally, we have to consider the possibility that
p(rt4 0) contains a real term proportional to g

4''/X"-4 /X =ge' ' /X' (9)

A solution 4 which has the desired analytic prop-
erties and satisfies (9) is

,
(

X'(~) ", g((o')e' "
21Ti - oo ((0 —(d + i5)X ((g )

(10)

The simplest expression for y(&u, t') is obtained
by substituting Eq. (10) in Eq. (6), The formal
expression for the Fourier inversion is then sub-
stituted in Eq. (3). The order of the t and the
~ integrals can be interchanged and the t integral
performed, but this Procedure is well defined-
only if we retain rl as a finite quantity until after
the w Foxier-inversion integral is evaluated.
We obtain

1V f
'~ g(~I) r oo

(S)=exp
J dA.

(2 )
d(u'X, (,)

X'((u) X (~)
((d —(0—tg)(CO -(d-25) (4& -(d-irI)((d —(8+16)

In the first term of the ~ integral, the contour can be closed in the upper ~ half-plane, Bnd the result
is zero. In the second term, it can be closed in the lower half-plane and picks up the residue at ~
—40 —'t'g

~ So

(S)=exp
kp 27T71. „X'((o') (12)
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~(»~ exp lA nil gg(d'g{o! )
o (2n)'J „

dxf in[1-~Vg(x)]
(x-o!'+ i(!)' (14)

where g =g (1-&Vg) ' is the Green's function in

the presence of a constant potential & V.
The v' integral in Eq. (14) may be carried out

by substituting a spectral representation like
Eq. (2) for g. Closing the contour in the lower
(d' half-plane picks up the positive energy part
of the g spectrum only. The x integral may be
simplified by introducing the retarded function
g„which is given by keeping the denominator
imaginary term in Eq. (2) positive for all ener-
gies. We can subtract in[1-A.Vg„(x)] from the
logarithm in Eq. (14) since its analyticity makes
its integral zero. The resulting argument of the
logarithm is unity for x &0 and unimodular for
x&0, so

~(S)~=e~(. mf, 'd~f -d~ f' dx

X V[lmg(Q7')]0 (X)(x-Q!')

wllel'6 0 l (x) ls 'tile sca't'tel lllg pllase slllft produced

by a constant potential AV:

0 (x) = tan '(—P, VImg(x)/[1-A VReg(x)]]. (16)

%e can adequately simulate discrete level
spacing in a finite box by cutting off the low-ener-

gy end of the x and ~ integrations at b, = e F/N,

The @=0 limit may now be taken using

Fi 'X ((u'-i7))„;— i) 'X (o!')

—idx {co')/d~'.

The first term in Eq. (13) can easily be shown to
yield the phase factor exp(ibE/l)), where hE is
the energy shift produced by a constant potential

The derivative is easily carried out because
of the exponential form of A', and we find

where N is the number of states of s-orbital
symmetry. To evaluate the leading term, the
nonsingular factors are set equal to their zero-
energy limits. The x and &' integrals then yieM
the factor in(b, /» F). The X integral is trivial
once we observe that VImg(0') is equal to the
A derivative of 0!,(0 ). The result for the over-
lap is, within a numerical constant,

l&»l=~ &, ~-=()'/»2, (17)
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where 6 is the Fermi-surface phase shift for
a =1.

This is precisely the result found by Anderson'
and ND. ' It is equally valid for all 5 within the
interval of width m accessible using the contact-
interaction model. Unlike the previous deriva-
tions, t:he present method enables us in principle
to evaluate the numerical constant by doing the
x and ~ integrals more accurately, after doing
the X integral analytically. 4

In their analysis, RS did not distinguish the
infinitesimal used in solving Eq. (1) from l).
This renders limits such as Eq. (13) ambiguous
and accounts, at least in part, for their failure
to arrive at Eq. (17).

&ote ««d i~ Proof. —Similar corrections to
Ref. 6 have also been found by Nozieres. '
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