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The abrupt changes of Knight shift K, and nuclear spin relaxation time 7.'& in Cd upon

melting have been examined by studying the spin susceptibility y~ and spin density S at
the melting point. It is found that the density-of-states effective mass m ~jm in Cd chang-
es by 27% upon melting while the spin density changes by only 8%. Both of these chang-

es combined satisfactorily'explain the abrupt changes of E, and T& upon melting.

ln solid Cd, the Knight shift K, strongly de-
pends on temperature' and undergoes a fractional
increase of about 70% in the temperature range
from 4'K to the melting point (594'K). Further-
more, at the melting point K, suffers an abrupt
increase of 34% and remains constant thereafter
in the liquid state. Recently, the unusually strong
temperature dependence of K, in solid Cd has
been explained by including the effects of elec-
tron-phonon interaction in the one-electron Ham-
iltonian and evaluating the spin density and densi-
ty-of-states effective mass m*/m at the Fermi
surface at various temperatures. On the other
hand, the temperature independence of K, in liq-
uid Cd has been explained' by the weak (or negli-
gible) temperature dependence of the liquid inter-
ference function' I(q). However, the question of
the abrupt change of K, at the melting point has
not yet been looked into in quantitative detail.

The purpose of this Letter is to report a quanti-
tative study of the spin susceptibility p, and the
spin density S in Cd just before and after melting.
An analysxs of these two quantxtxes which are d¹
rectly responsible for the change of K, will lead,
as we shall see later, to an understanding of this
abrupt change of K, at the melting temperature.

The Knight shift in metals can be written as

K, = Sm'NOoy, S,

where N&, is the volume of the metal (&, being
the volume per atom) and )(, is the spin paramag-
netic susceptibility. The spin densities S have
been calculated with a fair degree of accuracy
for both the solid' and liquid' metals. However,
theoretical calculation of y, is particularly diffi-
cult due to nonavailability of a practicable pro-
cedure to incorporate the exchange effect among
the Bloch electrons. %e can incorporate the ef-
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feet of the periodic potential in the susceptibility
through an effective-mass m*/m approximation
and treat the exchange enhancement q, of the sus-
ceptibility by an adjustable parameter. ' Thus,

I.O

x. = x.""(m*/m)n. , (2)

where X,
'" is the free-electron value of the spin

susceptibility. We will first concentrate on the
change of m*/m upon melting.

We define the effective mass to be used in this
paper by

m*/m =g(E „)/g, (E,),
where g(EF) is the density of states of conduction
electrons at the Fermi surface and g, (EF) is the
corresponding free-electron value. Assuming
the Fermi surface in the liquid state to be spheri-
cal, one can show that

g(E)/g, (E) = 2[(1/k) sE/sk] ',

where k and E are expressed in atomic units (k
=1, m = 2', e'=2). The density of states in the
liquid has been calculated by Ballentine' using
the Green's-function approach due to Edwards. '
Weaire' and Shaw and Smith' have utilized pertur-
bation theory to calculate the effective mass. In
this calculation, we have utilized the latter ap-
proach and the recent nonlocal pseudopotential"
of Cd.

The energy values Ek can be expressed up to
second order in perturbation theory, namely,

@ (0)+@ (i)+@ (2)
k k + k + k r

where the individual terms are

E."'=k', E,"'=&kll('(r)lk&,

and

E "' =pl I
&k'I ~(r)lk) I'/(k'-k")

=2' I l&k'I ~1k)I'/(k'-k") ji(lk-k'I),

where the pseudopotential W(r) can be expressed
as a sum of the potentials centered at each of the
ionic sites R„namely, W(r) =g,m(r-R, ). Intro-
ducing the nonlocal pseudopotentia. l ~(r) of Stark
and Falicov, "the corresponding form factors
can be obtained as

&k'l~lk) = Qv, (2l+1)P, (cos9, ,)O. ,i
'

x T„,(k)T„,(k'), (7)

in which v, are constants, the summation over n
and i is confined to the outermost core functions"
(4s, 4P, 4d) of Cd, and P, is the I egendre poly-
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FIG. 1. Normalized electron density of states g(E)/
go(E) of liquid Cd at 350'C. gi(E)/gp(E) is obtained by
expanding the energy E up to first order in perturba-
tion theory while g2(E)/go(E) is obtained with E taken
up to second order.

nomial of order l. The functions T„,(k) are the
Bessel transforms of the radial core functions,
P., (r):

T„,(k) = f j,(kr)P„, (r)rdr. (8)

Using the above form factors the values of Ek("
and E„("were calculated from Eq. (6). For E„(')
we have carried out the principal-value integra-
tion as suggested earlier. '

The density of states g(E) normalized to the
free-electron value g, (E) is plotted in Fig. 1 by
including energies up to first and second order
separately The f.irst-order correction g, (E)/
go(E) shows slower variation with k than that of
the second-order result g, (E)/g, (E). From the
latter curve the effective mass m*/m at 623'K
was found to be

m*/m =O. S27.

This calculation was repeated for other tempera-
tures up to 900'K by using the appropriate experi-
mental' l(q). The values of m*/m at higher tem-
peratures were found to be constant (0.827)~

Thus, it is reasonable to conclude that at the
melting temperature as well,

(m */m)'" = O. 827.

For the solid state, m*/m has been theoretical-
ly calculated at 0, 298, and 462'K. We have
plotted these values in Fig. 2 and extrapolated the
curve up to the melting point. Thus, for the sol-
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we can write

(15)

using Eqs. (11) and (12), we have

(T, '"/T, "g),„„,=1.88. (16)

Cd Effective Mass

On the other hand, from the experi. mentally re-
ported values" we obtain

(T, '"/T, 'g), „Pt = 1.59. (17)

Melting Point
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FIG. 2. Density-of-states effective mass m "/m of
solid and liquid Cd as functions of temperature.

i.d at the melting point,

(m*/m)'" = O.65O.

Using Eqs. (9) and {10)and assuming that 17, does
not change upon melting, the change of X, at the
melting point can be obtained from Eq. (2). Thus,

lie[/~ sol { g/ )1lg/( e/ )
sot ]

To determine the change of R, upon melting, we

a,iso need to investigate the change of the spin
density 8 at the melting point, The spin densities
have been obtained both in solid' "and liquid' Cd
as functions of temperature. Following an analy-
sis similar to that of the m*/m, we find

Combining Eqs. (11) and (12), tbe change of K,
upon melting is

(If,""/Ii, '"),„...=1.87.

From experimental measurements of K, at the
melting point, we get

(R,"g/If, '"), , = 1.84.

The good agreement between Eqs. (13) and (14)
indicRtes thRt the CIlRnge in 'g~ Rt the melting
point is not appreciable and can be neglected.

A further check on this analysis can be obtained

by studying the relaxation time T,. Since

(T,T) '~ [g(&t.)s]',

As we can see, the results in Eqs. (16) and (17)
are not in good agreement with each other, and

therefore need some explanation. It should be
noted that we have not considered the change of
the exchange enhancement q„of the nonuniform
susceptibility which is relevant to the discussion
of relaxation rate. Dickson" had noticed empiri-
cally that the change of T, between solid and liq-
uid Cd due to the exchange enhancement is 0.83.
Using this value for the exchange enhancement
factor and Eq. (16), we find

{T sol/T lig)exchange (18)

E. F. %, Seymour and G. A. Styles, Phys. Lett. 10,
269 /964); F. Boxsa and B.G. Barnes, J. Phys. Chem.

This result is i.n very good agreement with the
experimental result in Eq. (17). It is interesting
to note that if one uses m*/m =1 for liquid Cd,
as is usually assumed to be the case for liquid
metals in general, ' the changes in K, and T, (in-
cluding exchange enhancement) due to change in
m*/m alone are 1.54 and 1.97, respectively.
Both of these values are substantially larger than
tbe experimental values in Eqs. (14) and (17).
This would indicate that the spin density 8 has to
decrease upon melting. This seems rather un-

physical since the potential that characterizes
the strength of tbe angular component of the con-
duction-electron wave function is expected to be
weaker in the liquid than that in the solid because
of the increased thermal motion of the ions. This
would generally result in an increase of the spin
density in the liquid instead of R decrease a.s we

just observed,
In summary, we can conclude that the changes

of K, and T, in Cd at the melting point are mainly
due to the change in the density of states brought
about by the disappearance of the long-range or-
der in the solid state. Similar calculations for
other metals, where such an abrupt jump of
Knight shift occurs at the melting point, will be
helpful in substantiating the present viewpoint
emphasized in this note.
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Precision measurements of self-diffusion in zinc as a function of pressure indicate
that the activation volumes DV, and aV~ respectively associated with the nonbasal and
basal vacancy jumps have a temperature dependence given by (BDV, /BT)& = (6.2 &1.9)
x10 ~ cm~/mole 'K and {BDV&/BT)& = {7.6+3.4) &&10 ~ cm /mole 'K. A model calculation
based on a Morse-like potential indicates that the frequencies of atomic vibrations in the
vicinity of the defect vary with pressure in a way that is consistent with these experi-
mentally measured quantities.

According to the usual assumptions of the valid-
ity of reaction rate theory and thermodynamics'
in describing the diffusion jump of an atom in a
crystal, the study of the effect of hydrostatic
pressure on the self-diffusion coefficient D of a
pure metal gives information on the sum, hV, of
the volume changes ~V& and 4V that are, re-
spectively, associated with the creation and mo-
tion of those defects participating in the diffusion
process. On thermodynamic grounds we would
expect the activation volume 4V to be tempera-
ture dependent, since, according to one of Max-
well's thermodynamic equations,

(BAV/BT)~ = -(B&S/Bp) r

[B(~S,+ aS )/BP j„
where T is the absolute temperature, p is the
pressure, and 4S is the sum of the entropy
changes &S& and 68 respectively associated with
the formation and motion of the defect that is re-

sponsible for the volume change AV. As AS de-
pends on the way each perfect-crystal normal-
mode frequency is changed by the presence and
motion of the defect, ' we would expect (BbS/Bp) r
and hence (M V/BT)~ to be nonzero, since the
pressure derivatives of the perfect and altered
frequencies for each mode should in general be
different. However, the typical precision of
-10% to which the self-diffusion activation vol-
ume has been measured for a variety of metals
has always precluded the unambiguous observa-
tion of a temperature-dependent activation vol-
ume. Curiously enough, in those experiments '
where (BAS/Bp) r has been estimated, Eq. (1) has
never been invoked to indicate a possibly temper-
ature-dependent activation volume 4V, possibly
because the apparent trend of AV with T falls
within the experimental uncertainty in hV. It is
the primary purpose of this Letter to report re-
cent precision measurements of self-diffusion in
zinc as a function of pressure which indicate that
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