
Ver. UME 26, NUMszR 17 26 Apmlr. I971

Hydrodynamics of Liquid Crystals*

Dieter Forster
James Flanch Institute, The University of Chicago, Chicago, Ilhnois 60637

Tom C. Lubensky
Physics Department, Bxoum University, Pmvidence, Rhode Island 02912

Paul C. Martin and Jack Swift
Physics Department, IIa~va~d University, Cambridge, Massachusetts 02138

P. S, Pershan
Division of Engineerin and Applied Physics, IIarea~d Ghiversity, Cambridge, Massachusetts 02138

(Received 16 February 1971)

The linear ized hgdrodgnaDllc behavior of liqold crystals 18 systeMatlcally dedoced and
earlier theories reconciled and simplified. Predictions for ordinary and depolarized
light scattering are obtained and the latter compared with experiment.

Some months ago three of us' proposed an al-
ternative description of liquid-crystal hydrody-
namics. %e were dissatisfied with the Leslie-
Ericksen" picture because of these features:
(l) The long-wavelength modes of the liIluid crys-
tal should follow from rigorous thermodynamic
and hydrodynamic arguments and the proposed
equation for the director was not rigorous. It
was R Bloch- ox' Langevln-like equation~ second
order in the time, purporting to describe pro-
cesses decaying in microscopic times, as well
as the hydrodynamic relaxation pxocesses whose
rates were proportional to the square of the
wave number. (2) Their theory insisted on an
asymmetrical stress tensor although it can be
proven that whenevex angular momentum is local-
ly conserved there must be an equivalent sym-
metri. c stress tensor. Independently we know
that the averaged microscopic theory will give
the macroscopic theory and the microscopic
stress tensor can be taken to be symmetric.
Failux'e to use this symmetry leads to cumber-
some arguments about angular momentum.
(3) The theory did not introduce fluxes and forces
1D the fRshion RppropriRte to the underlying mi-
croscopic theory and thereby intxoduced parame-
ters with inappropriate time-reversal properties.

t

(4) Their parametr1zatlon of physical pI'ocesses
obscured simple symmetries and the positivity
of the Datux'al decay constants.

Unfortunately, the proposed altexnative was
more seriously deficient. It failed to include,
for certain geometries and polarizations, the
dominant relaxation mechanism for depolari. zed
light scattering. The purpose of this Letter
(w111cll R'tteIIlpts to codify SIIIlilRI' conclu81ons
reached by the many authors) is to eliminate all
of these difficulties, to give a complete, stxaight-
forward derivation of liquid-crystal hydrodynam-
ic8 to compare its consequences with ex18tlng
experiments, "and to summarize its predictions
fox' Rayleigh- and Brillouin-scatter ing experi-
ments not yet performed.

The fundamental problem in de~i ring hydrody-
namic equations is to deduce what independent
dynamic variations persist fox arbitrarily long
times when they vary arbitrarily slowly in space.
Not all fluctuations of the order parameter have
this cha.racter. Thus, in an Ising antiferr omag-
netic or in a superfluid, fluctuations in the mag-
mtude of the order parameter are not hydrody-
namic. The order pa, rameter in a, liquid crystal
is proportional to the quadrupolar term in the
mass density, '

e;,()=Z., "l( — ");( "- );--'&;,( "- ")'l&( — "),

where r ~ and m Rre the coordinate and mass of the A'th particle in the ath molecule and r" is the
molecular center of mass. Assuming axial symmetry we may write
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where n, (r) is the ith component of the unit vector defining the local symmetry axis, S(r) is the con-
ventional dimensionless order parameter normalized to unity at zero temperature, and C is a multi-
plicative constant. In a homogeneous nematic n(r) =no is independent of r. We shall take our 3 axis in
the direction of n'.

Although there is no microscopic conservation law for Q... two of its components, those with (i,j)
=(1,3) or (2, 3) must have low-frequency (hydrodynamic) fluctuations. These are the fluctuations that
we may identify in a, rigorous fashion with the two components 5n, (r, t) and 5nm(r, t) of the director in
an unstressed nematic liquid crystal. They are defined by

5(Q;~(r, t)& =CS(r) [5n;(r, t)n, '+n, 50n,.(r, t)];
they play a role similar to the phase or superfluid velocity in a superfluid; and they must be included,
along with fluctuations of the conserved densities of mass p, energy e, and total momentum g, in the
linearized liquid-c rystal hydrodynamic equations.

The proof that 5n; has hydrodynamic character (i.e., that it is a low-frequency Goldstone mode) fol-
lows orthodox lines. We observe that in the ordered state an infinitesimal rotation of Q» about the 2

axis is generated by the 2 component I., of the angular momentum, i.e., that

u&q„(r, t)& =(i/tz)&[q„(r, t), I.,(t)]&« = [&q„(r, t)&-&q„(r, t)&] ae ~0,

and that since angular momentum is conserved,

&(Q.,(r, t)&=(i/@)([Q.,(r, t), L, (t)1&« =o.

(As usual the square brackets indicate a commutator or h/i times a Poisson bracket. ) From these
two equations and their restatement in terms of Fourier components l, (q) of the angular momentum
density /, (r), it follows that the long-wavelength fluctuations of Q» are nonvanishing when (Q»&-(Q»&
0, and that these long-wavelength fluctuations must have vanishing frequency. If a finite field were
applied along the director to stabilize it, the fluctuations in 5n would cease to be hydrodynamic, ac-
quiring a finite frequency, and more phenomenological arguments would have to be used. This would
be reflected in the above argument by the nonvanishing of I,

We may summarize the "conservation laws" of the resulting hydrodynamics' by an entropy differen-
tial ds with

Tds =de v. dg- pdp-g—;,v, dn;. .

This equation applies to the temporally slow (lossless) changes in the state of the system that can be
described in a purely thermodynamic fashion. The necessity for the last term is a consequence of the
argument that the relaxation frequency of a spatially varying deviation in n; vanishes with vanishing
wave number. The variable conjugate to v, n;, p;, , must be proportional to the wave vector q of the
disturbance, that is, g, , =K;,.»V, dn„and thus the K are the Frank elastic constants; v =p 'dg; T is
the temperature; and p, is the chemical potential. Associated with each of the "conserved" dynamical
variables is a current

p + V g 0) 6 + V j Op g5 + V ja fj 0) pl5 + V /X 5/ 0 (2)

To complete the hydrodynamic description we need expressions for the currents in terms of the vari-
ables conjugate to the conserved densities. Using Galilean invariance, the isotropy of the liquid pres-
sure, and the uniaxial symmetry of the nematic, we have for the reactive terms (terms relating cur-
rents to densities with the same time-reversal properties are reactive)

g" =pv, j = (e+p)v, I;,. = 2(-~+y+1)(5;,.-n, on,.o)n, u„-2(i+y+1)(5;,- n, on, )0n, vo~.
The dissipative terms in the currents are given by

gD=O, y,
' =~,V, 5T (~((-~~)n, '(n' -V)5T, X;,.D= —(,,„y„,.

K,,„and $;,» are each described by three invariants. The three contained in K;,.„are the usual Frank
constants, "

K;,.» =K,(5;„-n; n~ )n,.'n, + (K, K,)e;,~~zz, e», n-, +K,(&;„n; n, )(&, , -n, n, —).
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Stability requires that they be positive.
Two further conditi. ons may be imposed on these equations. The first, y =0, follows from the condi-

tion that in the equilibrium rotating state n, =(v xn ); where v =-,'(Vxv). This condition may be demon-
strated microscopically. " The second very probable, but not compelling, condition is that despite the
long-range fluctuations of the director, the fluctuations in is; =-V,.X;, have finite range. This condi-
tion [which prohibits invariants like (q n ) in the n fluctuation spectrum] implies that &;,» ——y, 5, ,(5;„
-n, 'n, ').

With both restrictions, and with A&,.——2(V&U, +V,. u;), the director equation reduces to the one previ-
ously employed, '2

5n) =PA;;n, +((dxn );+y, ~Ã;, »V~V)5nq.

Vfe next consider the stress tensor. Although it is not unique, a perfectly acceptable symmetric re-
active stress tensor may be deduced by using the identity V&e,.»~, = V',.A;„-V'~A;, , and the identity be-
tween the reactive coefficients, Bg~/B{V,.g;,.) = Bn-;/Bv„Th. e latter follows from the energy conserva-
tion law implied by Eq. (1) in the absence of dissipation (i.e., with Tds/dt =0). We have

5o~„—- (5P)5~~+ j2k [K~~,„(VpV „5n,)n, ]+ 2 [K;~,„npoV pV „5n;Kp~,~n, VpV „5n,] + (j k -kj)j.
The dissipative invariants in the stress tensor are identical with the viscosities of a uniaxial single
crystal or a gas in a magnetic field. They are conveniently represented by

2(vs v2)[A~an~ ni +A~ana n~ ]-(v~-v2)5s~Aaa

-2(v, + v, -2v, )n n,.'n„'n, 'A„,-(v, -v4+ v, )[5,, n, 'n, 'A„+n, 'n,.'A„].
The positivity of the entropy production then implies that

v~(2v) + v2) + (v5-v4) q v2 +~ 0) v) +~ Oq v4 +~ Oq 2(v) + v5) —v4+ v2 +0~ Kt) &0, K'g&0, y~&0.

An incompressibility condition eliminates two parameters, i.e., v4= v, and v, =0. Note that A. does
not appear in any differential stability condition. Moreover, while A. is usually larger than unity there
is no physical requirement to this effect.

Leslie's parameters for an incompressible fluid are given by

2v3=o'4+~5 (y2~~/yi)~ yi=o'3 ~2~ ~= y2/y~r 2v~ = CX~ + Q4+ CXS+ A6~ A6—&5 =y2 = Q~+ &2~

Miesowicz's' are given by

q,
M =v„q,M = v, +(1-Z)'y, /4, q,

M =q, M+xy„.

and the parameters of MPH are given by

14=0, 4L5=(1-A) K~, 16+K,-A(K, +K3), 4M5= {1+A)K„M4+M6+I ~ =K~+K„

Even in the compressible fluid the frequency (d„of the slow mode polarized perpendicular to its prop-

agation direction is obtained from the equations

i&up5v, + i(12+a)(K,q, '+K,q, ')q, 5n, (v,q, '+-v, q, ')5v, =0,

i&u5n, -2i(1+%.)q35v2+y, '(K,q, '+K3q3')5n2 =0,

i~„(K,q, '+K,q, ') ' =y, '+-,'(1+1)'q,'(v, q, '+ v, q, ') '.

The frequency of the other slow mode, e„, is approximately given by

i~„(K,q, '+K,q, ') ' =y, '+-'[q, '+q, '+&—(q.' q, ')]'[v, (q,'-q, ')'-+2(v, +v, )q, 'q, '] ';

fast modes have frequencies

~4'y2=[v3qs +v~qi ]/» ~~fi —[v3(qx qs ) +2(vi+v2)qg q3 ]/p(qg +q'3).
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Orsay parameter Calculated Measured

M/

o'4' =83 l(q2 -v3)7i

0.059 +0.003
23 k2

8.5 +1

0.051 +0.013
21 k3
10 +1.5

This display of the Orsay data circumvents the
large uncertainties introduced in going from the
light scattering to the viscosities. The data
clearly suggest that no dissipative parameter be-
yond y, is necessary.

While all five modes are contained in the cor-
relation functions linking the director with p, e,
and g, =- (q g)/q, those linking the latter three
contain only the sound and heat diffusion poles.
Indeed, they differ from those of a simple liquid'4

only in that the heat diffusion constant D~ and the
sound attenuation constant I" depend on the angle
y between n and the propagation direction in a
simple fashion:

pc~Dr = [ai sin'y+«icos'p];

1 =Dr(c~c„'-1)+D„

pD i
= (2vi + v2- v4+ 2vs) cos p

+(v, +v, ) sin'y--, '(v, +v, -2v, ) sin'2y.

The bulk viscosities can be determined from
sound attenuation and thermal conduction.

We wish to thank for helpful conversations

The equality of attenuation of co» under the inter-
change of the one and three axes is an immediate
consequence of the stress tensor symmetry. The
reader is urged to examine the corresponding
expressions in the Leslie and Erickson notation.
An anisotropic $;,» would lead to the replace-
ment of y, ' in Eqs. (10) and (11) by ($,q, '+ (2q, ')/
(K,q, '+K,q, ') and ($,q, '+ g, q, ')/(K, q, '+K,q, '), re-
spectively.

Using only the Miesowicz measurements q,
=0.024+0.001, q, =0.092+0.008 (our error es-
timate), and q, =0.034+0.003=v„and using the
Orsay value for y, =0.059+0.003, it is possible
to estimate A. and v, and the three other parame-
ters measured in light scattering. "' They give,
for para-azoxyanisole at 125 C,

A. = 1.15+ 0.10, v, =0.024+ 0.001,

and the values listed in the following table:

D. Litster, R. Meyer, S. Kirkpatrick, B. Hal-
perin, L. Kadanoff, M. Stephen, J. Straley, and
P. de Gennes. We also wish to thank G. Durand,
L. Leger, and the other members of the Orsay
light scattering group for providing us prior to
publication with new data and analyses which
served to modify our conclusions.
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