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The phonon-induced d-d coupling, calculated in tight-binding approximation, is shown
to account for the order of magnitude of &, in transition metals. The model relates the
coupling constant to the cohesive energy rather than to the melting temperature as pro-
posed by Matthias.

Recently it was suggested that the superconductivity in transition metals is essentially due to pho-
noa-induced d-P coupling. In the present work, we estimate the coupling term for a pure d band in
tight-binding approximation and show that it can, alone, explain the order of magnitude of the super-
conducting transition temperature T„observed in transition metals and related alloys. This term is
not incompatible with the general symmetry arguments presented in Ref. 1.

For the sake of simplicity, we choose to study a nondegenerate band of tightly bound electrons, de-
scribed in the undeformed lattice (one atom per unit cell, six nearest neighbors) by the Hubbard Ham-
iltonian. When the lattice is deformed by displacing the ion on the site j from the position R, to R, +u, ,
we assume, as is usual in the study of one-dimensional systems'' and in some recent three-dimen-
sional computations, ' that the tightly bound d function follows the displaced ion without notable de-
formation. For small displacements the quasiorthogona?ity relation of well-localized d functions re-
mains valid. Therefore, we can introduce the operator a, creating the electron in the state ~d(r —R,.
-u, )), such that (a, , a,), = 5;,, and extend the Hubbard Hamiltonian to describe the deformed state:

H = Q J,. ~ a, , a, ,~ +Upon, in, ~. (1)

J',
z

= J(ai, +u, ,~
—u, ) is the overlap integral between the site I and one of two nearby sites 5a lying on

the lattice axis a:
J(az„+u, ,z

—u, ) = fd(r+a~ +u, ,~
—u, )V(r)d(r)d'r. (2)

Here a~„=R,,~ -R,. and &(r) is the self-consistent potential attached to the site in the undeformed lat-
tice and carried rigidly by the displaced ion. This is a supplementary approximation of our calcula-
tion. It is consistent with a rigid displacement of the d function if (n, ,) does not change with respect
to its value Q in undeformed state. It can be shown that even if one works with a long-range Hamil-
tonian instead of (1), but with an almost half-filled band, the self-consistency corrections arising
from 5(n, ) can be neglected with respect to the rigid-ion part of electron-phonon coupling constant.
This latter is obtained on expanding the overlap integral (2) in the Hamiltonian (1) to the first order in
u~+g -u~.

8J(R)J,, =J(a )+ ~ (u, „-u,). (3)
R=gg

Usually the symmetry of the d function with respect to the equilibrium lattice is such that the gradi-
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ent of the overlap integral points along the lattice axis:

aJ'(R) a~=-q,J a

Here qo is the Slater coefficient describing the exponential, e '0", decrease of the d function. It is
0

usually of the order of 1 A '. If we expand u,. in terms of phonon operators b, and introduce the Fou-
rier transform c» of electron operators a;, the linearized Hamiltonian (l) reads

II = ge»c», c„+ Q g», 'c»„, c»,(b„+b,„)+Q,Un, in, i,
ha Aq ov

where

e» = Q W(a ) cosk a,
g„, -I O,II»» ', k'=k+q,

21VM+,

I»." -—2iqog J(a~) ' (sink„a~ —sink„'a~).
n ~n

(4)

(5)

(6)

N is the number of atoms, M the ionic mass, w„' the unrenormalized frequency of phonons of polar-
ization &,'. I» ' is the quantity appearing in McMillan's' strong-coupling definition of the phonon-in-
duced effective coupling constant A,,

nF(I') nF ffdo«'Q. II»» I'vF 'vF' '
M(~') M((u') f fdodo' v 'v '

Q, II» i'=4q, 'Q~&'(a„)(sink~a~-sink 'a~)'.

Introducing the electron velocity v» =I ice»/Bk
and noting that the cross term in the squared
bracket vanishes by symmetry it follows that

(I') = 2k'q, 'a '(v, ') (8)

(vF ) = fvFdo/fvF 'do.

The integral in the denominator of Eq. (8) can-
cels with the density of states in the product'
nF(I'), while the remaining integration over the
Fermi surface can be transformed by Gauss's
theorem into an integration within the enclosed
volume of the reciprocal space. In this way, we
find

n, (I') =q,'Z„
E,= 2f F en(e)de. -

The energy & is measured here from the middle
of the band. E, represents the direct contribu-
tion of tightly bound electrons to the cohesive en-
ergy of the crystal. This quantity was extensive-
ly studied by Cyrot-I. ackman' for different mod-
els of the density of states. As a result, E, has
a quite regular, paraboliclike, behavior as a
function of band occupation Q and is always con-

(uP) is an appropriate average of the renormal-
ized phonon frequency. nF is the density of states '

and hence

per atom per spin at the Fermi level correspond-
ing to the band energy (5), v F the corresponding
Fermi velocity, and do and do' are the elements
of the Fermi surface corresponding to k and 4',
respectively.

The coupling term (6) connects two neighboring
Wigner-Seitz cells. Its order of magnitude —band-
width/interatomic distance —agrees literally with with
the prediction of Ref. (8) based on a dimensional
argument, which is in turn in agreement with ex-

perimentss.

It was empirically observed' ' that in supercon-
ducting transition metals the product nF(I') has a
much smoother behavior then either of the two
quantities nF and (I') separately We ex.amine
now the possibility of such compensation in our
simple model.

In what follows we restrict ourselves to the or-
thorhombic geometry with interatomic distances
a not much different from one another. This
still allows for a considerable anisotropy even
for an s band since the small difference in a„
leads to appreciable differences in J(a. ).

The sum over polarizations in Eq. (7) can be
performed on using the fact that the polarization
vectors form an orthonormal set. Therefore,
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vex with respect to the Q axis, whatever the den-
sity of states is. For a not too asymmetric den-
sity of states, F-, passes through a broad maxi-
mum in the vicinity of a half-filled band. Hence,
in the region tvhere nF(I') is strongest, so that it
can overcome the Coulomb repulsion, it is also
weakly dependent on Q.

Formulation (8) is established in the simple,
one-band, six-neighbors model but is, perhaps,
more general than the model itself. With suitable
behavior of (u') this would also agree with the
suggestion" of Matthias that the lower the melt-
ing point the weaker the superconductivity of the
transition metal. Actually, Eq. (8) relates T, to
the cohesive energy rather than to the melting
point. But these two quantities scale" much in
the same way in these elements. At the present
stage of understanding of transition metal super-
conductivity it is thus interesting to compare the
values of nF(I') obtained from the measured" co-
hesive energy and Eq. (8) on one hand and from
empirical values of A. and (ar') on the other hand.

In the latter case (~') was determined from
neutron experiments' for V, Nb, Ta, Mo, and W,
since the Debye eD does not provide a sufficiently
reliable estimate of the average phonon frequen-
cy. The values' of nF(I') for Ti, Zr, Hf, and Re
are less accurate since the neutron work is not
yet available for these elements.

The only remaining parameter, qo, in our Eq.
(8) is determined by fitting the McMillan nF(I2)
for V and Ta, and assumed constant throughout
the corresponding period. For the fifth (4d) per-
iod, q, is obtained by interpolation. The three
(reasonable) values for q, are thus 0.93, 0.91,
and 0.87 A ' for fourth, fifth, and sixth period,
respectively. The numerical results are listed
in Table I.

We note that the relative smallness" of nF(I')
in the fourth period is accounted for by Eq. (8)
without playing on q, ' values. Equation (8) ac-
counts also for the approximate constancy of
nF(I') in the middle of each period but predicts
a smoother decrease of nF(I ) in the fourth group
than observed, and does not account for the
small secondary peak at Re. This can be due ei-
ther to the crudeness of our computation or to
the inaccuracy of nF(I') values obtained with (ua)
estimated from specific heat data. Finally, the
values of qo E, for Cr, Mn, and Fe in Table I are
predicted by interpolation between V and Co, be-
cause the measured cohesive energy in these met-
aIs probabIy contains an important exchange con-
tribution, not appearing in E, defined by Eq. (8).

0
= 0.93A Cr Fe Co

Ec

(ev/at)
4.85 5.3 4.1 4.3 4.4

(Io Ec

(ev/A* at)
4.2 (4.6) = 4.8 =4.6 =4.2 3.8

nF & I'&

( ev/A' at)
0

qo= 0.91 A

2.7 4.6

71 Nb No I'c Ru Rh

Ec

( ev/at)

qo Ec

(ev/A' at)

6.3

5.2

7.6

6.3

6.8

5.7

6.6

5.5

6.7

5.6

5.8

4.&

BF & I

(ev/A' at)
0

qo = 0.87 A

3 0H 7.2 6.8

Ec

( ev/at)

'Io Ec

(ev/A' at)

QF& I

(ev/A at)

6.3 8.1 8.6 8.1

4 s (6&) 6.5 6.1

2.7 6.1 6.3 8.1

8.1

6.1

6.9

5.2

In conclusion, the present calculation accounts
for the order of magnitude of &, in transition
metals on the basis of the intraband d-d coupling
alone. " The good numerical agreement obtained
for transition metals should be confirmed by
computations using more realistic structure of
the d band than that used in the present model.

*The vrork presented here is a portion of a Ph. D.
thesis which will be submitted by S. B. to the Faculte
des Sciences d*Orsay.
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Two-photon magnetoabsorption experiments are reported for the first time. From the
spbtting of the 2p excitons of ZnO in a magnetic field of 42 kG the hole masses and the
g values for the upper valence bands I'q and I'7 are deduced.

Two-photon spectroscopy has gained growing
importance as a spectroscopic method in study-
ing electronic properties in solids. Because of
the changed selection rules as compared with
ordinary spectroscopy (one-photon absorption),
two-photon data yield information on excited
states which are commonly forbidden for one-
photon transitions. ' Two-photon measurements
with polarized light allow symmetry assignments
to be determined for the different excited states.
Much more quantitative information on band pa:—

rameters (e.g. , effective masses, g values) are
expected from tmo-photon magnetoabsorption,
since transitions with 6m=+2, +1, and 0 are
two-photon allowed, as compared with 4m = +I
and 0 in one-photon absorption. In this Letter
we report the first observation of two-photon
magneto-optic absorption in ZnO. Because of
its rather large band gap (3.5 eV) and its pro-
nounced exciton structure, ZnO is well suited
for this kind of experiment. One-photon data'
on ZnO show three mell-resolved exciton series,
which are interpreted as transitions to S excitons
from the three valence bands [symmetry I, (A),
I'9 (&), and I', (C)] and a I', conduction band.
The two-photon spectrum looks quite different:
It shows very narrow exciton lines close to the

corresponding 2s transitions. This is shown for
the A and B excitons in Fig. 1. For polarization
parallel to the c axis one gets in one-photon ab-
sorption the C series and in tmo-photon absorp-
tion again a single pronounced exciton line, 4

which is close to the 2s line in the one-photon
spectrum. %e interpret the two-photon lines as
transitions to 2p excitons. The shift of about
2.5 meV to lower energies as compared with the
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FIG. 1. Dashed line, one-photon spectrum (Ref. 3)
of ZnO at 4.2 K, polarization & c axis. Solid line, two-
photon spectrum of ZnO at 1.6 K, polarization L c axis.
Laser flux: 10 photonslcm sec.
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