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PINCH-EFFECT OSCILLATIONS IN AN UNSTABLE TOKAMAK PLASMA
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If Tokamak toroidal discharges are operated with q & 3, relaxation oscillations are ob-
served to occur involving alternate contraction and expansion of the plasma. It is shown
that the detailed properties determined for these oscillations on the Canberra experi-
ment can be explained on the basis of the newly discovered trapped-particle pinch effect.

In the early experiments with the Tokamak to-
roidal plasmas it was discovered that discharges
with the parameter q less than about 3 or 4 ex-
hibit relaxation oscillations involving periodic
changes in the minor and major radii of the plas-
ma column and negative spikes on the voltage
oscillograms" (q= aB~/RBs-, where a and R are
the minor and major radii of the plasma; 8 and

p are the angular coordinates going the short
and long way round the torus, respectively).
These relaxation oscillations have been the sub-
ject of a detailed study on the Canberra, Tokamak-
type experiment. ' From the results, the main
properties of these oscillations can be summa-
rized as follows:

(1) The oscillations occur when T, exceeds a
critical value. For the parameters of the Can-
berra experiment, namely, a = 8 cm, 8 = 40 cm,
B~=6.5 ko, I~=22 kA, and n 10" cm ', the
critical T, is about 30 eV.

(2) The radial profiles for the toroidal current
density (j~) show a marked discontinuity at a
certain radius, the value of j~ being large within
this radius and from & to —,

' of this value outside.
(8) During the contraction phase of an oscilla-

tion, the current discontinuity moves towards
the magnetic axis with a radial velocity of the
order of -cE~/Be, with the internal j„increas-
ing to maintain an approximately constant total
current. (E~ is the toroidal electric field ob-
tained from the measured volts per turn. ) There
is also an increase in plasma density at the cen-
ter implying that plasma is being transported in-
wards with a comparable velocity.

(4) During the contraction there is a higher fre-
quency oscillation superimposed on the contrac-
tion with frequency of the order 2X10 sec

(5) Towards the end of the contraction the mag-
netic surfaces have an elliptic shape with the
major axis approximately parallel to 8=-,'w. (8
is measured from the equitorial plane, which is
hereafter assumed to be horizontal. j~ and B~
are assumed to be positive. )

(6) After the current channel has contracted by
a significant fraction of the tube radius, the di-

T & 6.7 x10 aqua (2)

where T, is in eV. From the parameters given
above for the Canberra experiment, the critical
value for T, is found to be 2& eV. Hence the ob-
served relaxation oscillations occur only under
those conditions when trapped-particle effects
are important.

In the treatments of particle transport for con-
ditions when the inequality (1) is satisfied, the
effects of a toroidal electric field E~ and of the

rection of motion reverses and a rapid expansion
of both the plasma and the current channel oc-
curs. A large negative spike occurs simulta-
neously on the voltage-per-turn oscillogram.

(V) The mean radius of the plasma (R) increas-
es during the contraction phase and decreases
(rapidly) during the expansion. The plasma col-
umn also oscillates vertically, the direction of
movement being downwards as Ro increases.

(8) The electron temperature rises from 30 eV
to between 100 and 200 eV during the contraction.
It falls rapidly during the expansion.

In an earlier paper' it was shown that the ten-
dency for the plasma to contract with velocity of
order -cE~/Be could be explained by the proper-
ties of the trapped particles. From the conserva-
tion of canonical angular momentum it was shown
that all trapped particles (trapped magnetically
or electrostatically) drift towards the magnetic
axis with the radial velocity -cE~/Be. In this
paper it will be shown that the other detailed
properties of the relaxation oscillations have
simple explanations in terms of the trapped par-
ticles.

There is general agreement' that trapped-
particle effects become important in collisional
transport processes when the particle collision
frequency (v) satisfies

v &Bev,/Br,

where r is the minor radius and v~ is the thermal
velocity. (Since the diffusion is ambipolar, we
consider only the electrons. ) Substituting for v

this becomes
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associated current j~ have been omitted. Thus,
the zero-order distribution functions have been
taken as stationary Maxwellians. If, instead,
the zero-order electron distribution function is
taken to be of the form

f.(v~~)
—expl. -(v~~-v, )'/vr'1,

where v, = j~-~/ne= j„-/ne, the effects of both E~
and the friction between electrons and ions will
be included to a first approximation. Making
this substitution in the analysis of Galeev and
Sagdeev' for the intermediate collision frequency
range yields the modified radial particle flux

(nv) = — j~Be+k(T,+ T,).D . dn

e dr

where D (=v'~'qp, ck T,/2R~B) is the Galeev-
Sagdeev diffusion coefficient with the numerical
correction found by Rutherfordv and by Stringer, '
and where temperature gradients have been as-
sumed to be zero. p, is the electron I armor
radius. The range of collision frequencies for
which this diffusion formula is valid is

= gj &&t &
to maintain this current, where q is the

resistivity. The ratio of this electric field for
the edge of the plasma (r=a) to the applied elec-
tric field is

Hence, if a(dp/dr)/B, .' & R(g)/ag „ the ratio in

(6) can exceed unity and hence electrostatic trap
ping of particles will occur. At the edge of the
plasma this inequality can be expected.

The significance of electrostatic trapping by a
potential V compared with magnetic trapping is
that there will be a group of low-energy elec-
trons (mvr'/2 &e V) which will be trapped irre-
spective of their velocity direction. For these
particles to become passing particles by colli-
sions, the appropriate collision frequency is v~,
their energy-exchange time. From Spitzer, ' for
low-energy particles vE =2&. Hence, the as-
sumption of a local Maxwellian velocity distribu-
tion becomes invalid for the edge of the plasma
lf

(r/R)3 2BeVr/Br & v & BeV~/Br. v & Bevy/2Br, (7)

The upper limit has already been given in (1).
The lower limit corresponds to the collision fre-
quency for scattering between trapped and un-
trapped velocity directions (Rv/r) being too
small to create a local Maxwellian distribution
in the time scale of the other processes, namely,
the bounce time for trapped particles.

The term j~Be in (3) is new and indicates that
the diffusion will be radially inwards until &~Be
+k(T, + T,)(dn/dr) is ze.ro. This is analogous to
the pinch effect in the absence of B~, except that
the velocities involved are different. Assuming
that dn/dr is small, the velocity of constriction
1s

v = -Dj ~Be/nkT, =-nn' 2(r/R)2(cE~/Be), (5)

where n =Bevy/Brv. At the critical collision
frequency given by equality in (1), n is unity and
it increases inversely as v decreases. Since T,
is observed to rise rapidly during the contrac-
tion phase making n large, the velocity in (5)
could possibly explain the observed pinching of
the plasma (there is no accurate experimental
measurement of the velocity), but it will not ex-
plain the sharp discontinuity in j~.

Considering, therefore, the edge of the plas-
ma, the part ofj && resulting from the nonzero
divergence ofj, namely, g&~~8

= 2r(dP/dr) cos8/-
RBe, requires an additional electric field E~~B

which is only a factor 2 less than conditions (1).
In particular, because of the uncertainty in the
experimental parameters, equality in condition
(7) could correspond to the critical temperature
for relaxation oscillations as equally as condi-
tion (1). When condition (7) is satisfied, the re-
gion of positive potential will have a shortage of
low-energy electrons due to the trapped-particle
pinch effect carrying these electrons inwards.
This local shortage of electrons cannot be neu-
tralized by passing electrons since these will
have a lower density where V is positive. Hence,
the shortage of low-energy electrons will in-
crease the positive potential, leading to more
trapped electrons. This amplification process
for the number of trapped particles is believed
to be the cause of the sharp edge to the plasma
column. In the edge, the electrostatic potential
will cause a large proportion of the particles to
be trapped. These particles, and hence the edge,
will move inwards with velocity -cE~/Be, since
the increased potential will cause the particle
bounce times to be less than their collision
times. A plasma with lower density will remain
outside the edge which is deficient in trapped
particles, and has a reduced number of passing
particles.

The assumption that the ratio in Eq. (6) is
greater than unity is equivalent to assuming that
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the contribution to j~~ due to the trapped particles

(j~~r) is comparable with the contribution from
the passing particles. Hence, the sharp edge of
the trapped-particle density profile will generate
a corresponding sharp fall in j~. (When electro-
static trapping is involved, the simple cos~
variation of j~~r is no longer valid. Ions will be
trapped on the opposite side of the minor diame-
ter to the trapped electrons and if "banana" or-
bits extend beyond 180' in 8, the sets of trapped
particles will overlap. )

Another effect of the enhanced electrostatic
potential will be to excite an ion oscillation. Ions
will be accelerated along the magnetic lines of
force away from the region of positive potential.
Because of the inertia of the ions there will be
an oscillation. If the potential is of the order
k T, /e the period of the oscillation will be the
transit time for an ion with this energy to rotate
2m in 0 moving along B. Thus the oscillation fre-
quency is Be(k T, /M)'~'/2nrB. Taking a mean
value of T, for the initial part of the contraction
to be 50 eV, this frequency is 1.5 &10' sec ', in
good agreement with the observed high-frequency
oscillation.

In the main body of the plasma, magnetic trap-
ping of electrons will be dominant. This trapping
will occur for high-energy electrons with suffi-
ciently small v~~. Their maximum density will
occur where the minimum in the potential [it[B (

f(E~B-„/B)dx~~] occurs, which must lie between
8 =0 and 8 = 2~. Because of the trapped-particle
pinch effect, their density will exceed that pre-
dicted by a Maxwellian velocity distribution.
This will lead to a local negative potential which
will cause electrostatic trapping of low-energy
electrons diametrically opposite. Assuming no

mass rotation of the plasma in the ~ direction,
only a smaller proportion of the ions will be
trapped. This is because of the effect of the
radial electric field' [E,= (dP, /dr)/ne] The.
maxima. in the density of trapped electrons will
therefore occur in the two quadrants 0 & 0&-2n
and n & 8 & 2w and hence maximum contributions
to j~~ will occur in these two regions. Assuming
that the pressure of the magnetically trapped
electrons exceeds that of the electrostatically
trapped electrons, the former will produce the
larger j~~. Hence j~~

will have components pro-
portional to cos(&-5) and cos2(8-5), where
0 & 6 & 2m. The first harmonic term will cause a
shift of the magnetic axis and the magnetic sur-
faces towards the quadrant 0 to -2~ and this will
explain the downward movement of the plasma

column. The second harmonic term mill cause
elliptic-shaped magnetic surfaces with major
axis in the quadrant 0 to +2m, as observed.

The most likely cause of the rapid-expansion
phase is a magnetohydrodynamic instability.
Even if the rotational transform were to remain
below 2m during the contraction, a study of the
necessary and sufficient conditions for stability"
shows that the increasing pressure gradient and

its increasing separation from the conducting
wall will lead to instability. However, in the
Canberra experiments, the rotational transform
increases to well above 2~ (t -4w) and since this
makes the "verage field curvature unstable, an
interchange instability is likely. Once expansion
has commenced the trapped particles could play
a part in the expansion. The changing Be (de-
creasing inductance) will cause E~ to become
negative over the outer regions of the plasma,
and this will cause the motion of the trapped par-
ticles to be outwards.

Lastly, during contraction the electron tem-
perature will rise (a) because of the Ohmic heat-
ing combined with the improved insulation from
the walls, (b) because of the compression of the
plasma, and (c) because heat conduction will be
radially inwards until -d lnT/dr is comparable
with dlnn/dr -as a result of a form of the Et-
tingshausen effect associated with the trapped-
particle pinch effect." The increase in the ma-
jor radius during contraction and decrease dur-
ing expansion follow directly from Shafranov's
equilibrium formula for b, in terms of the minor
r-adius of the plasma and the plasma pressure. "
(b. is the displacement of the center of the plas-
ma cross section from the tube center. )

It is concluded, therefore, that the pinch-effect
property of trapped particles, combined with
the multiplication process for trapped particles
associated with electrostatic trapping at the edge
of the plasma, leads to comparatively simple
explanations for all the observed properties of
the relaxation oscillations.

The author is deeply grateful to Professor B.
S. Liley and his colleagues for preprints of the
papers describing their results.
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The phonon-induced d-d coupling, calculated in tight-binding approximation, is shown
to account for the order of magnitude of &, in transition metals. The model relates the
coupling constant to the cohesive energy rather than to the melting temperature as pro-
posed by Matthias.

Recently it was suggested that the superconductivity in transition metals is essentially due to pho-
noa-induced d-P coupling. In the present work, we estimate the coupling term for a pure d band in
tight-binding approximation and show that it can, alone, explain the order of magnitude of the super-
conducting transition temperature T„observed in transition metals and related alloys. This term is
not incompatible with the general symmetry arguments presented in Ref. 1.

For the sake of simplicity, we choose to study a nondegenerate band of tightly bound electrons, de-
scribed in the undeformed lattice (one atom per unit cell, six nearest neighbors) by the Hubbard Ham-
iltonian. When the lattice is deformed by displacing the ion on the site j from the position R, to R, +u, ,
we assume, as is usual in the study of one-dimensional systems'' and in some recent three-dimen-
sional computations, ' that the tightly bound d function follows the displaced ion without notable de-
formation. For small displacements the quasiorthogona?ity relation of well-localized d functions re-
mains valid. Therefore, we can introduce the operator a, creating the electron in the state ~d(r —R,.
-u, )), such that (a, , a,), = 5;,, and extend the Hubbard Hamiltonian to describe the deformed state:

H = Q J,. ~ a, , a, ,~ +Upon, in, ~. (1)

J',
z

= J(ai, +u, ,~
—u, ) is the overlap integral between the site I and one of two nearby sites 5a lying on

the lattice axis a:
J(az„+u, ,z

—u, ) = fd(r+a~ +u, ,~
—u, )V(r)d(r)d'r. (2)

Here a~„=R,,~ -R,. and &(r) is the self-consistent potential attached to the site in the undeformed lat-
tice and carried rigidly by the displaced ion. This is a supplementary approximation of our calcula-
tion. It is consistent with a rigid displacement of the d function if (n, ,) does not change with respect
to its value Q in undeformed state. It can be shown that even if one works with a long-range Hamil-
tonian instead of (1), but with an almost half-filled band, the self-consistency corrections arising
from 5(n, ) can be neglected with respect to the rigid-ion part of electron-phonon coupling constant.
This latter is obtained on expanding the overlap integral (2) in the Hamiltonian (1) to the first order in
u~+g -u~.

8J(R)J,, =J(a )+ ~ (u, „-u,). (3)
R=gg

Usually the symmetry of the d function with respect to the equilibrium lattice is such that the gradi-
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