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Experimental data on the microgiant spreading widths of analog resonances indicate
that these widths decrease slightly with increasing mass number A for A= 87-50 and
then increase again for A &60. A calculation is presented in which this remarkable prop-
erty can be understood in terms of a model in which the distribution of Coulomb mixing
strength in a nucleus has two peaks with the analog state lying between these two peaks
an.d moving with respect to them with changes in A and T~.

With the increasing number of analog-state
resonance experiments, systematic trends of
various properties associated with these reso-
nances have emerged. Specifically, the spread-
ing widths of analog-state resonances have been
extracted fairly accurately for a number of nu-

clei (see Table I). An interesting experimental
feature of these widths is that they have a mini-
mal value as a function of A for nuclei with A
= 50. The significance of this remarkable feature
has motivated this Letter. In particular, we re-
port on a calculation which predicts a minimum
in this width at the experimentally observed val-
ue.

The spreading width of an analog state describes
its average decay into the dense spectrum of nor-
mal (T lower) isospi-n states which surround it,
and therefore proceeds through charge-dependent
forces. In the presence of such forces the strength
of the analog state, measured, for example, by
its proton-emission width, will be shared among
nearby levels of the compound nuclear system.
Moreover, the averaged proton strength distribu-
tion has a single peak of a near Lorentzian shape,

with a width given by

I..'=2~&Ii'I'&p(E. ).

Here, &~ V~'& denotes the mean square isospin-
nonconserving matrix element between the ana-
log state g, (T =Tt, Tt-1) and the T-lower states
P~(T = T t —l, T z I), while p(E—,) represents the
density of these latter states at the analog ener-

gy +a.
To obtain I', , we first calculate the sum of the

squares of the transition-matrix elements' from
the analog to all normal isospin states gz. We

restrict ourselves, for the moment, to the iso-
vector part C& of the Coulomb force and write
for this strength the expression

Mv(T t -I)=Zxl &S.ICrl tx&l'.

This expression can then be simplified (by use of
closure) to

M„(T —I) =&q,lc„P.. .c lq, &,

where P~, projects onto states with 1' =T&-1.
Then, using uncorrelated statistical-model wave
functions in which the density p(r) of each nucleon
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is taken to be the same, this expression can easily be evaluated and reads'

( )
27, -1 (A-2)(A+2T ~+2)

i7 g (27'g + 1) 16 (2)

The I and J symbols are given by the expectation values I = e'(r» 'r» ')—C2 and J =e4(r» ')-C', where
C is the average Coulomb interaction of a pair of particles: C =e'(r» '). Next, the I term can be
simplified to I =(y'(r))-C', where rIr(r) is the potential arising from the charge density p(r). If we as-
sume the nucleus to be spherical and uniformly charged and to have a sharp cutoff radius xo, the value
of I=0.017(e2/r, )' and 4 =0.81(e'/ro)', with C =6e'/5ro. Furthermore, in Ref. 2, I was found to be sen-
sitive to the density of nuclear matter p(r) while Z was insensitive to it W. e therefore calculated the
appropriate generalization of I using harmonic-oscillator wave functions. This generalization for
closed-shell nuclei can be reduced to

& rr
~

rr n

where y„,(r) is the potential arising from the harmonic-oscillator radial density. The values of I ob-

Table I. Experimental values and theoretical estimetes of the spreading width
The total theoretical estimate for la ~s the um of I"o c~ and I a m~'

~ expt
{kev)

"Cl+p
4OAr+p

"Ca+P
44Ca+P
48Ca+P
5OTi+P
SJV+p
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"Ni+P
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"'Ib+p
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0
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Table Il. Values for the single-particle excitation coefficients I, I(), M, N, and I'.

Nucleus I/(e 2/ro)' Io/(e 2/ro)' M/(e~/ro) 2 N/(e~/r )2 I /(e'/ro)'

He4
pf6

Ca

0.075
0.050
0.045

0.060
0.0488
0.0375

0.060
0.0400
0.0315

0
0

0.0015

0
0.0088
0.0045

tained are given in Table II.
Having obtained the total transition strength to the normal-isospin states, we now investigate the na-

ture of the states which exhaust this sum rule. To facilitate this evaluation, we write the exact poten-
tial y„,(r) as y„, = y, +Ay„„where y, = (Se'/2r, ')(r,'-Br'), and calculate how much of I is accounted for
by the substitution of p, for y„,. I can then be written as I=I, + AI with I, given by

Io =
I +4A '(nlml y, In+ llm)'j+ I +4A '(nlml goin-1lm)']+ I +4A '(nlmlcpolnlm)'

rg $m

-(Z4A '( & I~.l
& &)'I=IM)+l&)+I:+1, (4)

nlm

and with M being the remainder arising from the terms in 4p„,. The first term, M, corresponds to
a monopole excitation of the nucleus. The second term, N, corresponds to a contraction of the nucle-
us and will not be present if the exclusion principle, which we discuss below, is properly accounted

for. The fluctuation term, +, involves mixing into states in which a nucleon does not change its orbit.
This term can be simplified to

+ =f Q X.X~b.(o.)-~.(P)192 '(QX. ) ',
n, 8= nl

where N is the number of nucleons in level o.

and h, (o. ) =(nip, lo. ) The & .term therefore con-
tains the mixing to the configuration states of
Lane and Soper. ' Table II also lists the values of

I„M, N, and I". From this table we first note
that most of I is accounted for by Io and, thus,
the replacement of the exact potential by po is an
excellent approximation. Secondly, we note that
the I, term is accounted for predominantly by
transitions of the type el —n. + 1, /. Hence, the
Coulomb force primarily mixes into an analog
state those states which are obtained by an exci-
tation of a particle-hole pair (in which a particle
is excited from the orbit nl to the orbit n+ 1, l).
Moreover, since the analog state has T =T&, T,
= T

&
-1, this pa,rticle-hole pair must couple to

t =1 so that the normal isospin T =T&-1 can be
reached. It should also be noted that it is just
this type of excitation which is the primary
source of isospin impurity in ground state con-
figurations. For ground states, the monopole
particle-hole excitation is coupled to t = 1 which

is then coupled with the isospin of the neutron ex-
cess, T &, to give a resultant T = T

&
+ 1. For the

situation discussed in this Letter, the t =1 mono-

pole excitation in the parent is coupled to T =T&',

the monopole impurity in the adjacent isobar then

results from an isospin mixing to the "antianalog"
state corresponding to the analog of this mono-

pole excitation.
Thus, the I part of the sum rule is nearly ex-

hausted by mixing into two types of states: into
the configuration states and into a t =1 monopole
excitation of the core, with the latter mixing be-
ing more important. The J term of Eq. (2),
which represents two-particle scattering, is ap-
proximately 20/A times smaller in the harmonic
oscillator model. Also, a calculation of the mean

energy of the 4 term' shows that it represents
the very distant states in Crg, which do not con-
cern us here.

Returning to the sum M&, we now consider the
effect of the exclusion principle. First, the re-
placement of A by 2Z in Eq. (2) amounts to con-
sidering the full Coulomb force instead of the
vector part of it. Second, if we replace the ex-
act potential in I by the harmonic potential p, and

write Zp, = p, (Z), the total strength to the mono-

pole excitation is then

M, '=
2 T T Q(nlly, (Z)ln+1l)'N„, . (6)2 1 2TQ 1

m 2 T 2Z 1

We note the following description of this result:
The factor (2T &

-1)/T
&

(2T
&

+ 1) is the square of
the Wigner coefficient for coupling a t =1, t~ =0
state to a T =T&, TS=T&—1 state to form a T =T&
—1, T, =Tz-1 state, while the factor 2 is the
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probability of the proton particle-hole excitation
being in a f =1 state. («Ip, (~)ln+1l) is the radi-
al matrix element describing the excitation of a
proton from the orbit nl to the orbit n+1, l through
the one-body potential y, (Z), and N„, is the num-

ber of protons in the level nl that can-make such
transitions. Now, the sum is restricted by the
exclusion principle to extend over those states
nl for which the state @+1,/ is above the proton
Fermi sea. Moreover, since the proton particle-
hole excitation must couple to I'= 1, the sum is
further restricted to those states nl for which n

+1, l lies above the Fermi level of the neutrons.
The exclusion principle also acts to restrict the
contribution of the + term to the total transition
strength by limiting the sum in Eg. (5) to levels
n and P of the excess neutron shells in the par-
ent. Including these effects, the values of M, '
can be obtained, and they vary rather smoothly
from 2 MeV' for "Ca to 4 MeV' for 'O'Pb with a
slight maximum of 5 MeV' around A. =90. In con-
trast, the transition strength to the configuration
states fluctuates violently because of shell effects
between 0 MeV and 0.150 MeV for A ~ 100. For
A &100 this transition strength begins to lose its
violent fluctuations and varies rather smoothly
from 0.150 MeV' for 4=100 to 0.200 MeV' for
A = 200.

Having obtained the coupling strengths, we now

calculate the energies of these states. First, the
isospin-splitting energy of the analog state from
the configuration states, E,-E„can be obtained
from the symmetry potential' V,

&
=t, T,V, /A.

Here, t, is the isospin operator of an extra nucle-
on, T, is the isospin operator of the core of neu-
trons, and V, =—110 MeV. Calculating the expec-
tation values of this potential with these states,
we obtain E, -E,=T&V,/A which has characteris-
tic values of 5, 7, and 11 MeV for A=50, 90, and
200, respectively. Next, the shift in energy of
the monopole state due to its interaction with the
symmetry potential, V»~ —(t, +t, +ts) ~ TOV, /A

+(t, ~ t, +t, ~ t, +t, ~ t, )V, /A, is downward relative
to its unperturbed position in the absence of &sy~
and is (T&+2)V,/2A. —Here t, and t, are isospin
operators of the particle-hole excitation. Since
the monopole excitation lies above the analog
state because of the large energy necessary to
create a t =1 particle-hole pair, the effect of the
symmetry potential is to shift the analog state

closer to the monopole excitation. Contrastingly,
when eaIeulating ground-state impurities, the
symmetry potential pushes the higher isospin
states away from the ground sta,te. Our zero-or-
der estimate of the energy of the monopole state
above the analog state is then E„-E,=2h&u-(Tz

+~)V, /A. Using the relation 28+ =82A '~', we

see that for A =208 the energy splitting is only
-3 MeV. However, the single-particle shift 21~
does not include correlations in the particle-hole
states produced by the nuclear force. ' A calcula-
tion' of the monopole polarizability based on the
two-fluid hydrodynamic model results in an in-
creased separation by a factor of 2 for the t = 1
excitation. Such an increase is also familiar
from giant-dipole resonance studies. Using this
increased separation, we have E -E,= 4$~-(T z
+-,')V, /A which is -40 MeV for A = 50, -30 MeV
for A = 90, and -15 MeV for A = 200. F:om these
results, we see that as we go from light to heavy
nuclei, the analog state moves away from the
configuration states and shifts closer to the.
monopole excitation.

Since the configuration and monopole states
have normal isospin, they couple to other states
of normal isospin by the nuclear force. Conse-
quently, these states mix with the dense spectrum
of such states near the analog, and it is just this
damping which we believe is, in turn, responsi-
ble for the damping of the analog state. This lat-
ter damping is then determined by the mechanism
for the T =T&-1 mixing. Two models suggest
themselves for this mixing, namely the strong-
coupling model with a uniform spreading picture,
and the giant-resonance model. In the former
model, the Coulomb mixing strength becomes
uniformly distributed and we can approximate
(V ) by My(T ~-1)/N and p by N/(E), where N is
the number of states coupled to the analog state
and (E) is the energy region over which this mix-
ing extends. The width I', of Eq. (1) is then

r,'-=2~M, (T, -1)/(E),
and is numerically a factor of 5-10 times larger
than the experimental values listed in Table I.
Also, the spreading width is predicted to have a
&~/T z dependence for A &100, a result which con-
tradicts the experimental data. On the other
hand, if the damping of the T =T&-1 modes is
governed by a giant-resonance picture, the width
I",~ is given by'

z & cr I' M 2

(E -E )'+(~ /2)'~" (E -E )'+(~ /2)'
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Here I', and I" are the damping widths of the
configuration and monopole exci.tation states, re-
spectively, into the T =7&—1 states which sur-
round the analog state. In Lane', I, has been es-
timated to be 5 MeV for A. =50 and 10 MeV for A.

=200. Since both E,—E, and Q,M~,' increase
from A = 50 to & =200, the configuration-state
contribution to I', is nearly constant for A )100
with a, value I",,=—10-15 keV. For A (100 this
contribution fluctuates with a maximum value of
=30 keV. IQ TRble I, we list the contributions of
this texm to I', . In order to evaluate the mono-
pole term, we must know the value of I at the
analog energy. Now, little is known both theoret-
ically and experimentally about this width. Nev-
ertheless, a consistent picture can be obta. ined
if I" is taken to be 3 MeV for all nuclei. Using
this va. lue, the monopole excitation contributions,
I', , are given in Table I. From this table we
see that the monopole contribution increases
fRlrly regularly with lQcreRslI1g + RQd ls of tI1e

order of 5 keV for A &70. This result combined
with the configuration-state contribution predicts
R minima ln I, around + = 50.

In conclusion, the contributions of the configu-
ration stRtes aQd monopole excitRtlon to I Rre
consistent with the experimental data if we as-
sume a giant-resonance picture for the damping
of these states. In turn, this assumption means
that the distribution of Coulomb mixing strength
has essentially two peaks with the analog state
lying between the two. Furthermore, with this
hypothesis, the decrease in the spreading width

of an analog state from A. = 37 to & = 50 and the in-
crease again for A. & 60 is explained by the motion
Rs R function of + Rnd Tg of tile RI1a.log-state posi-
tion between these two peaks coupled with the
fluctuating contribution of the lower peak to this
spreading width and the systematically increasing

contribution of the upper peak to it with increas-
lQg A.
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