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We give a semiquantitative model for the density of states and transport properties of
an electron in a system of randomly located hard-core scatterers. Our main results are
these: (a) The density of states has the usual square-root behavior for high energies
and a tail of localized states at the low-energy end; the energy at which the transition
occurs is computed from percolation theory. (b) For a fixed temperature the fraction of
electrons in localized states increases drastically with the density of scatterers above a
critical density. Thus, cur model provides a physical explanation for the mobility tran-
sition found by Neustadter and Coopersmith.

The theory of the electronic structure and
transport properties in disordered materials is
presently under active discussion. ' Neustadter
and Coopersmith, ' in particular, have produced
a theory of the mobility of an electron interacting
with a random, low-density distribution of hard-
core scatterers. They find a rapid decrease in
mobility with density far beyond that expected
from the usual semiclassical theory at about
10 scatterers per cm' for a scattering length
of 0.62 A and a temperature of 3.96'K. The
significance of their result is twofold: (1) It is
accurate provided only that the two expansion
parameters in the problem, pa' and a/A. rare
small, where p is the scatterer density, a is
the scattering length, and A~ is the thermal
wavelength. ' (2) It appears to confirm the cur-
rent models4 of the electronic structure of dis-
ordered materials pioneered by Mott and Lif-
shitz which have thus far received support pri-
marily from plausibility arguments. These
models have, as their most essential feature,
bands of extended states with tails of localized
states. The mobility is supposed to drop abrupt-
ly at the energy of transition from localized to
extended states. The localized states are associ-
ated with potential Quctuations within the dis-
ordered material. In the present paper we pro-
pose a very simple semiquantitative model which
exhibits all the above features, and which illu-
minates the results of Neustadter and Cooper-
smith and their relation to the more general
models.

It is well known that a gas of repulsive seat-
terers acts as a potential barrier for an electron.
The .height of the barrier for a dilute gas is
given by the optical potential"

V, = (n'/2m)4npa,

where p = density of scatterers and a = scattering

length. In order to find the density of electronic
states we adapt to the present situation a method
due to Kane. ' %e imagine the whole system
divided into cells C,- of volume ~=LS and treat
the number N,. of scatterers (and therefore the
optical potential) in each cell as a random quan-
tity. Furthermore we assume that the density
of states n(E) is a sum of contributions from the
individual cells,

n(E) =Q,.n,.(E), (2)

and that each n,.(E) is the density of states cor-
responding to a box in which there is a constant
potential V,. =4nS N;a/2m&v:

(2m)8/2
n,.(E)=2~, , (E-V,.)"'.

4m 8 (3)

(4)

from which we obtain the average number of
scatterers per cell,

The optical potential is valid for pa'«1 (dilute
gas), ' which implies (N)»1. The probability
distribution for the random variables N,. is there-
fore Gaussian with a mean value (N) and a
standard deviation (N)"'. Using this fact and
Eqs. (2) and (3), the density of states for a sys-
tem of total volume 0 can be written as

(2m)sn V i~s E V

As the cell side L we use the spatial extent of
a typical wave packet, I-bx- I/p„-k(3 /2m E)' I'.
The energies of interest Iie around Vp,.
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where

E(e) =- (2m) '~2f Z'~2 exp[-(e-Z)2/2]dZ,

F (e)

, E-Vo(N)um
0

Equations (1), (5), (6), and (7) completely deter-
mine the density of states. A plot of E(e) is
given in Fig. 1. The dashed line is E' ' to which

E(e) tends asymptotically for large e. From
the way in which n(E) was obtained, it is easily
seen that it has the following properties:

(a) For e» 1 (or E» V, + V,/(N)") almost
every cell contributes to n(E). An electron with
this energy can be anywhere in the system, i.e.,
is essentially free.

(b) The tail of states with large negative e
comes from those few cells in which the density
of scatterers is extremely small. If an electron
with such a low energy is in cell C,, the sur-
rounding cells will act as impenetrable potential
barriers, thus keeping the electron trapped.

2
The asymptotic form F(~) =e ' "/2M2~e~"'
gives a Gaussian tail, as found by Halperin and

Lax in their Gaussian approximation. "
(c) The band edge is smeared over a region of

order bE - V,/(N)'", which is significantly
smaller than the shift V0 in the position of the
band edge and goes as pa(pa')'" in contrast to
the pa dependence of V0.

These ideas permit a simple interpretation of
the mobility transition found by Neustadter and

Cooper smith. 2 For a first rough argument we
assume that all states with «0 (or E & V, ) are
localized, while all states with ~ &0 describe a
free electron. According to (6) and (c), the tail
of localized states extends over a range b,E —V,/
(N)"'. For kT «b, E the electron will be trapped
most of the time, so p = 0. For kT» E, on the
contrary, the existence of localized states should
not limit the mobility significantly. The transi-
tion must occur when bE and k T are of the same
order, that is, kT-V, /(N)'" which, using (1)
and (5), gives

2ppgP g 4/ 5 33/ 5

(4wa)"'

Putting in the values T=3.96 K and a=0.62 A

used by Neustadter and Coopersmith we find
p= 6.4&& 10"scatterers/cm', in excellent agree-
ment with their calculations. We also have the
temperature dependence p —T ", a resuIt that
could be used to check our model.

The idea that 1ow-energy states are localized

was crucial for this discussion. To develop it
further we use some results from percolation
theory. ""For each energy we divide our cells
into two classes: Class A, which we call allowed
cells, contains all those with

V, = VON~/(N) & E; (9)

class &, called prohibited, contains all others.
From now on we call a state localized if it is
surrounded by some closed surface lying entirely
within prohibited cells. A classical electron in
such a state cannot "percolate" away, in the
sense given by Broadbent and Hammersley" to
this word, as first pointed out in the present
context by Ziman. " We make the assumption
that states which are localized in this sense
give no contribution to the mobility. Let P(E) be
the probability that a state of energy E chosen
at random is nonlocalized. This quantity, called
percolation probability, depends only on the
concentration C(E) of allowed cells and was com-
puted by Frisch, Hammersley, and Welsh" using
Monte Carlo methods. The result of interest to
us (three-dimensional cubic lattice) is given in
Fig. 6 of their paper, and we approximate their
curve with the function

(0, C(E) & 0.3,
P(E) =' (1.0)

)1-exp( —25[C(E)—0.3]], C(E) )0.3.

On the other hand, the condition (9) for a cell to
be allowed is equivalent to (N, -(N))/(N)' '&(E
—Vo)(N)' /Vo—= e. The left-hand side is a nor-
malized centered Gaussian variable; therefore

C(E) = (2m) '"f exp( —x'/2)dx.

There exists a critical energy E, which makes
C(E,) = 0.3 and below which all states are local-
ized according to (10). The corresponding value
of e in (ll) is -0.52. This cutoff energy corre-

I I
I I I I I

0

FIG. 1. Function I k) obtained by numerical integra-
tion of Eq. (7). The dashed line is e
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We conclude that the rapid drop in mobility
with increasing density is mainly the result of
the formation of bound and resonant states as-
sociated with density fluctuations in the hard-
core gas. This is precisely the picture which
would have emerged from the current models
of the electronic structure of disordered materi-
als. Moreover, our theory yields a transition
from bound states to extended states at E„Eq.
(12). The extended states are of two types above
E„resonant, which contribute little to the
mobility, and nonresonant, with the percentage
of the latter continuously increasing with energy
away from E, .
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This Letter reports the first observation of spin-split Landau levels in graphite.
These are observed in both natural single crystals and in pyrolytic samples. Experi-
mental splittings are compared with the theory of McClure and Yafet. Discrepancy be-
tween theory and experiment is partially accounted for by large shifts in the Fermi ener-
gy with field.

Spin splitting of Landau levels in graphite is
observed for the first time. In natural single
crystals we find splittings for the m=1 and n=2
electron levels, and for the n= 1 hole level.
(The signs of the carriers have recently been

determined. ") In pyrolytic samples only the

n = 1 electron splitting is observable. Splittings
are observed as double extrema in several trans-
port coefficients as a function of field, and these
are a measure of the conduction-electron g shifts
when shifts in the Fermi energy with field are
accounted for.

Wagoners observed conduction-electron g shifts
from electron spin-resonance studies. Spin

resonance, however, measures the g shifts
averaged over the Fermi surface for particular
magnetic field directions. Splittings of extrema

in transport oscillations due to spin-split Landau
levels measure the spin-orbit splitting for par-
ticular points in the Brillouin zone. ' McClure
and Yafet' have calculated the g shift for particu-
lar locations in the Brillouin zone. However,
to compare with the spin-resonance experiment,
they had to average over the electron and hole
Fermi surfaces. In this Letter we present re-
sults which can be compared directly with the
McClure and Yafet theory.

Figure 1 shows the magnetoresistance of a
natural single crystal as a function of magnetic
field to 10 T at 1.1 K for the magnetic field paral-
lel to the [0001] axis. Adams and Holstein'
have shown that conductivity maxima occur at
coincidence of Landau levels and E F. In graphite
we find experimentaI:y' that this implies resis-

810


