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An electron drift driven by an app1ied constant electric field causes an ion acoustic in-
stability. A steady state is proposed in which ballistic clumps of plasma behave like
dressed test particles and collisiona11y scatter each other. The applied field is balanced
by the dynamical friction force on the clumps. The resulting conductivity is o= 10~&~/hAo.

In a collisionless plasma the resistivity is gen-
erally believed to be due to the scattering of par-
ticles by waves driven unstable by the applied
field. However, because of the formation of plas-
ma clumps" it appears likely that a rather dif-
ferent state develops in which the electron and
ion clumps behave like macroparticles and col-
lisionally scatter each other.

We assume that the plasma contains a uniform
electric field E, (parallel to a strong magnetic
field) which causes the electrons to acquire an
average velocity u which in turn drives an ion-
acoustic instability. We further assume that a
quasisteady state develops in which macroscopic
properties such as the average distribution func-
tion f(v) change slowly compared with the ion-
acoustic frequency ~, =kv, =k(T, /m;)'" (e.
=electron, 1=ion; q„m„n„and T, are elec-
tron charge, mass, average number density,
and temperature; ~~,'=4mn, q, '/m, , T, =~2,v, ',
an'=T, /4mn, q, '.) This problem has been con-
sidered by a number of authors. ' '

There are two basic questions to be answered.
First, what ultimately limits the wave growth?
Second, what, if anything, inhibits the electrons
from freely accelerating? Several processes
can limit wave growth; however, we shall as-
sume that for a sufficiently large field E, the re-
quired energy and momentum transfer to the
ions can be achieved only by trapping a portion
of the ions in the waves. '

To answer the second question one must con-
sider the types of wave-particle interactions that
are possible. The conventional collisionless the-
ory for f(v) provides only for diffusion. However,
diffusion can retard only the positive-slope por-
tion of f, (v) and then only for v =v, . For large
wave amplitudes the resonance can be broadened
or one can include higher-order diffusion and
thereby involve a greater portion of velocity
space in the resonance. But the negative-slope
portion of f, remains a problem if diffusion is
the only operative process. The negative-slope
portion must be retained if a quasisteady state is
to be achieved. What is needed is a drag or dy-

namical friction force equal to -Ep which will re-
tard electrons independent of sf, /sv. Such a
force, which has previously been omitted from
the theory, can occur in collisionless plasma.

To understand this force consider the develop-
ment of the instability. As the electrons feed en-
ergy to the wave at the linear growth rate y,
= ~s'"(u/v, )~„ the wave grows and the ion wave-
particle resonance width increases. Eventually
some ions become resonant (trapped) and absorb
wave energy at a rate y; sufficient to make the
total nonlinear growth rate y» vanish, i.e., y»
=y;+y, =o. However, this is not an acceptable
steady state because the resonant ion and elec-
tron scattering by the waves will cause ballistic
clumps to form. These clumps will then act like
discrete test particles and continuously emit un-
damped waves by the Cherenkov process, leading
to an increasing wave energy density. Therefore,
for a steady state we must require that y» be
sufficiently negative to just balance the Cheren-
kov emission. The state is analogous to the
dressed test-particle model for linearly stable
plasma. ' "

One can understand the formation of clumps as
follows: Since plasma particles are randomly
scattered by the electric field of the turbulent
plasma, the distribution function will develop
chaotic fine-grain fluctuations in phase space.
Such fine-grain structures are ignored in the
"smoothed" distribution function used in the qua-
silinear theory. These fluctuations can be thought
of as a superposition of clumps of plasma. Con-
sider fluctuations of size 6'xA'v in phase space.
If 6'xh'v is small, then all particles of the same
species lying inside 6'rb, 'v will move together
as a clump since they will have approximately
the same velocity and will experience approxi-
mately the same forces. The smaller the clump
size 6'rA'v, the longer the clump lifetime. For
sufficiently small clumps, the lifetime can be
longer than the clump collision time or other re-
laxation times of interest. Such clumps will then
behave like a single large particle or macrop3r-
ticle whose charge and mass is the aggregate of
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the charges and masses of the individual parti-
cles which comprise the clump. In the steady-
state case, the clump population is constant in
time. This is possible, even though the clumps
have a finite lifetime, because the turbulent plas-
ma is constantly creating new clumps.

The equation describing the formation of the
clumps will be contained in a subsequent publica-
tion. Related problems of clump formation,
dressing, and Cherenkov emission have been
studied in the coherent-wave case" "and the
bump-on-tail instability. ' Clumps which are ba-
sically ballistic modes have been considered re-
cently in other connections. " "

When y»&0 in the steady state, the turbulent
plasma electric field E will be due entirely to
dressed clumps. This means that an additional
field-particle correlation will develop and pro-
duce dynamical friction in addition to diffusion.
The equation for f(v) becomes a Fokker- Planck

equation. It contains, in addition to the usual
quasilinear diffusion, a drag term which is the
reaction of the plasma-shielding cloud on the
test clump.

The equation for the average distribution func-
tion f(v) for each species is derived as follows.
We use the notation y-„and fk for the Fourier
transform (on r and t) of the fluctuating piece of
the total potential and distribution function and

P& and f-„ for the corresponding clump por-
tions. We can write for each species

(&)

where gt, is the Fourier transform (on r-r, and
t) of the ensemble average (denoted by angular
brackets) Green's function operator fd'r, fd'v,
x &6(r,-r(-t))5(v, -v(-t)))s(t), where r(t) and v(t)
are the particle orbits with initial values r and v.
and s(t) = I for t & 0, 0 for t & 0. Equation (I) is
solved by treating f& as a source and substitut-
ing ln

—~ (2m) 'fd'kfd'O'fd~tde'ik'&y-. .f- ).
Bt m Bv k 6) k Q)

We put &Pp. .J& )=&Pf)& (2w)'5(k+k')5(&u+v'), where &)k denotes a Fourier transform with respect
to r, -r, and t,-t„and eliminate the clump self-interaction (Im&Pf )q =0). The resulting equation for
the 1th species is

d'k

e(k, v) is the nonlinear dielectric constant

-&PQv))~ ' d'v g~ "',-' . (2)
m~J

and

g(k ~) —I &.~
i d3v g» (i)fk,i.(d gf,

Q2 k(d (3)

&&f(v)» =2Resk &Pf(v))f.

If the turbulence level is low g& =i(e-k v) and if the clumps were just discrete particles &pf(v))-„
=«g& f(v)2&&(u kv) I-n this. case it is easy to see that (2) reduces to the Lenard-galescu equa-
tion. "" Of course in the Vlasov limit this discreteness vanishes. The first term in curly brackets in
(2) is just quasilinear diffusion due to a random distribution of dressed clumps. The second term is
the dynamical friction on each clump. Equation (2) is a. clump collision operator.

One can easily show that (2) conserves total particle energy and momentum. From this it follows
that the energy and momentum of any species cannot change due to collisions within that species [I =j
in (2) j. This ensures that electron-electron scattering will not change T, , u, and therefore y, .
Therefore we neglect the e-e terms in (2). (In the I enard-Balescu collision integral, like-particle
collisions do not change f at all in one dimension. )

Bf,/Bt consists of two terms: a diffusion term due to the dressed fields of ion clumps and a, drag
term describing ion friction on the electron clumps. For a steady state this drag force must just bal-
ance the applied field E,. From (2) and (3) this drag term is

dk
(5)
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This can be approximately evaluated as foHows for the one-dimensional case. Tux'bulent fields
which are large enough to trap ions in acoustic waves mill also trap most of the eleetxons since the
electrons can xespond to highex' fxequeney fields. IQ such fields the stochastic eleetxon motion will
cause it to sample most of velocity space on a fast (trapping) time scale (ku., ) '. Therefore the veloc-
ity dependence of gff', (v))k should just be proportional to the probability of finding an electron at v:
(Pf, (v))& =(P)t-, k'f, (v)/4n'n, q, . Using this, we can write

„„„(qf.(v))~. f.(v) ~(,&
~ {2m)', "

fe(%,, cu)/' 4wn, q,

where 4 is an appropri. ate avex'age parallel to M. The requix'ement that the edge of the ion-distxibu-
tion function is just barely trapped in a wave of phase speed v, and wavelength 2wjk implies that (E )
= (km;v, '/4vq, )'. Using this result along with (6} in (5) and putting Imc; = -y;{8e/8&v) = -2y;/~, PX~',
we Obtain

kryo;v, k 2y;
4Zgq 4FFg~ g~ QP~k QD

n, q', u (32m)'"(u„
Eo N.L}

This value of v is the same ordex of magnitude as those observed in several experiments. "'"
The nature of the drag term can be made somewhat more intuitive by writing (5) in a different form.

By expanding e(k, v} around the wave resonance at ~ = cu„(5) becomes

(2g) (8&/8 )[(~-~,) +y~~ I 1(2v)' ' " 2(8e/8~ )y„L,

Since the frequency speetx'um of the electron clump density has a width of order kg~, the trapping fre-
quency, we can write (Pf, (v)}g~=4vq, k 'f, (v)((I,')~/n)[2@v, /(aP+O'U, ')], where n, is the clump densi-
ty. Equation {5)for the drag force on each electron now becomes

d'k 4vq, 'y, k -y~~ (n, ')-„
„{2n)' (8e/8(u, )y~~'k' kv, n

The first factor in (9) is the drag force on an
electx'OD of speed v~ due to ChereQkov emission
of an acoustic wave vrhose growth rate is y».
The second factor is that portion of the spec-
trum of the electron clump chax'ge density lying
within the Cherenkov resonance. The third fac-
tor is the Duxnber of electrons in the clump.

The following pictux'e fox' the drRg force.eIQerg-
es. The electron clumps follow erratic and ran-
dom oxbits which carry them throughout the e1ee-
tron velocity space in a time of order (kv, )
The resulting clump charge density Pk induces
a fieM EI, in the baekgxound plasma. On the av-
erage, this field exerts a force density Jd'kjd&o
x(2&) '(EP)k on the clump. The principal con-
tribution to this force is at the resonance ~ = ~,.
The resonance eox'x'esponds to CI1ex'eQkov exQis-
sion of the acoustic wave in the direction of g
and therefore the force i.s always in the -u direc-
tion. Since particle "mixing" in the eleetron-
veloeity space is fairly complete due to the e-e
terms ln (2) th18 force applies uniformly to al-

r most all electrons. Of course those electrons
which are not resonant (trapped} will run away.

The fact that direct electron-electron interac-
tion CRnnot eha~e T~ ox' u plays RQ esseDtial x'ole
in this model. If (E') is large enough to trap
most of the electrons then velocity diffusion will
heat electrons at a rate (d/dt}n, T,» aE, ' which
is, of course, i.mpossible. The problem is how
to explain the coexistence of a large (E') with
electrons having a small (8/8f)T, . In this model
the answer is that the i.Delusion of a dynamical
friction force cancels the electxon energy gain
from diffusion due to other electrons (i.e., con-
serves energy in electron-electron collisions) ~

T, ean change only through intex'action with the
ions or, in other words, with that portion of (E')
driven by ion clumps. This reduces (8/8t)T, by
a factor y;/re~, .
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New secondary electron emission spectra have been obtained by a rapid analyzer,
which presents the full spectra in the range from 0 to 100 eV in 1 msec on an oscillo-
scope. The spectra show distinct peaks corresponding in energy to the volume and sur-
face plasmons: for Al at 15.2 eV; A1203 at 31, 22.5, and 17.5 eV; and KCl at 13.6, 9,
and 7 eV. It is suggested that these groups of secondary electrons originate from plas-
mon decay.

The predictions of volume and surface plas-
mons have been made by several authors. ' ' For
example, the surface-plasmon frequency v, of a
metallic spherical particle surrounded by a me-
dium of dielectric consta. nt e is to, = re~ (l+ [(l+ ])/
l] e) ' ' (l =1, ~ ~ ~ ), c ~ being the well-known plas-
ma frequency &u~

= (4vre2n/m)'I2, where n is the
number density of electrons taking part in the
oscillation. Experimental verifications of the
existence of volume and surface plasmons have
been made by the measurement of distinct ener-
gy losses of the primary electrons' or by optical
spectra in the far uv and computing the energy-
loss function Im(l/e). 6'7 On the other hand, when
plasmons decay, they may emit photons' or they
may transfer their energy to conduction elec-
trons. These electrons then can emerge from

the solid giving rise to the so-called plasmon '

secondary emission. e As far as we know this
has never been established by experiment. We
obtained new secondary electron emission spec-
tra of Al, Al, O„and KCl with our rapid analyzer.
Figure 1 shows the spectrum of aluminum. The
main peak is located at 2 eV and corresponds to
the commonly observed value for metals. ' The
peak at 15.2 eV should belong to the volume plas-
mon, because we get 5~~=15.8 eV with three con-
duction electrons taking part in the oscillation.

Figure 2 shows the spectrum of aluminum ox-
ide. The main peak is located at 31 eV, the sec-
ond at 22.5 eV, and the third at 17.5 eV. We ob-
tain 5+~=28 eV for Al.,o, with 24 valence elec-
trons and this should correspond to the experi-
mental value of 31 eV, for ~~ is based on a free-
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